All proceedings
Enter a document #:
Enter search terms:

Info for readers Info for authors Info for editors Info for libraries Order form Shopping cart

Bookmark and Share Paper 1574

Phonological Acquisition as Weighted Constraint Interaction
Joe Pater, Karen Jesney, and Anne-Michelle Tessier
339-350 (complete paper or proceedings contents)


In the study of acquisition and learnability in Optimality Theory (OT; Prince and Smolensky 1993/2004), learning is characterized in terms of changes in constraint ranking. Learners begin with a ranking of markedness constraints above faithfulness constraints, and rerank them on the basis of evidence from the target language. A theory of learnability that accounts for the human acquisition process should both converge on the correct final grammar and model the path that learners take to get there. The Gradual Learning Algorithm (GLA; Boersma 1998, Boersma and Hayes 2001) can model some, but not all, aspects of the learning path, and this paper shows that the GLA is non-convergent. The Constraint Demotion Algorithm (Tesar and Smolensky 1998) is convergent, but non-gradual. This paper argues that the search for a gradual convergent learner may be aided by replacing Optimality Theory's constraint ranking with numerical weighting, returning in this respect to OT's predecessor Harmonic Grammar (HG; Legendre et al 1990, Smolensky and Legendre 2006). The advantages of weighting are demonstrated by using a minimally modified version of the GLA implemented by Boersma and Weenink (2006) that learns Harmonic Grammars, rather than OT grammars.

Published in

Proceedings of the 2nd Conference on Generative Approaches to Language Acquisition North America (GALANA)
edited by Alyona Belikova, Luisa Meroni, and Mari Umeda
Table of contents
Printed edition: $320.00