1. Introduction

Delaware is an Eastern Algonquian language that shows differential argument marking (DAM). The DAM phenomenon in Delaware is manifested by an inflectional suffix, called PERIPHERAL AGREEMENT (PA, Goddard 1979). PA occurs at the right edge of the verb and indexes the phi-features (animacy, number, and obviation) of a third-person argument. In Delaware, definiteness gives rise to differential subject marking (DSM). As shown below, the definite inanimate subject is overtly indexed by PA -al, (1a), while the indefinite counterpart is not indexed, (1b).

(1) Delaware DSM: inanimate subject

<p>| | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1-</td>
<td>cut</td>
<td>-INV</td>
<td>-1PL</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>IN.PL</td>
</tr>
<tr>
<td>a.</td>
<td>n- təmsə -kw -oneño -al</td>
<td>paxksi:kan -al</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>knife</td>
<td>-PL</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>‘The knives cut us.’</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>b.</td>
<td>n- təmsə -ko -hna</td>
<td>paxksi:kan -al</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1- cut</td>
<td>-INV</td>
<td>-1PL</td>
<td></td>
</tr>
<tr>
<td></td>
<td>knife</td>
<td>-PL</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>‘Some knives cut us.’</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

(Goddard 1979: 159)

In fact, (1) is a peculiar case as Delaware subjects generally do not show DSM. Instead, differential peripheral agreement only occurs when the subject of the transitive clause is INANIMATE (as in (1)) or OBVIATIVE (i.e. non-topical third person argument). As shown in (2), when the subject of a transitive verb is animate, it’s overtly indexed by PA, -ak, regardless of definiteness.

(2) nə̌- mɪl -əkw -w -ak

<p>| | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1-</td>
<td>give.to</td>
<td>-INV</td>
<td>-1SG</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>AN.PL</td>
</tr>
<tr>
<td></td>
<td>‘They/some people give to me.’</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

(Goddard 1979: 174)

In the literature, DSM has always been discussed in connection with differential object marking (DOM). Aissen (2003)’s prominent account considers DSM as a mirror image of DOM. Others have proposed that DSM works in the same way as DOM, in particular, is differentiated by their syntactic configuration (e.g. Coon & Preminger 2017; de Hoop & Narasimhan 2009; Jelinek & Carnie 2003; Kornfilt 2009; Woolford 2009, among others). Interestingly, Delaware DSM and DOM are surfaced by the same suffix via PA. If Aissen (2003)’s approach was correct in capturing Algonquian DAM, we should expect a DOM pattern such as the following: an inanimate object should not trigger DOM while an animate object should trigger DOM. However, it is not what happens in Algonquian. In fact, regardless of the object’s animacy, whether animate, (3), or inanimate, (4), the definite objects always are indexed by PA while the indefinite objects are unindexed, showing DOM.

(3) nə̌- mɪl -əkw -w -ak

<p>| | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1-</td>
<td>give.to</td>
<td>-INV</td>
<td>-1SG</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>AN.PL</td>
</tr>
<tr>
<td></td>
<td>‘Some people give to me.’</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

(4) nə̌- mɪl -əkw -w -ak

<p>| | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1-</td>
<td>give.to</td>
<td>-INV</td>
<td>-1SG</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>AN.PL</td>
</tr>
<tr>
<td></td>
<td>‘Some people give to me.’</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

This paper supports the second account by tying DSM to an argument’s syntactic height, in a similar vein to Diesing (1992)’s movement approach to DOM. In essence, Diesing’s work considers DOM to arise from object movement in that the moved object is more accessible for the Agree probe than the unmoved counterpart because it is syntactically higher. Syntactic height thus explains the cross-linguistic patterning of DOM. In broad strokes, Diesing’s proposal predicts the existence of DOM (cf. (3), (4)) and the non-existence of DSM (cf. (2)), but there are certain exceptional contexts in which DSM does occur, contra Diesing’s predictions (cf. (1)). I will argue that these instances of DSM follow from subject movement in the same way that DOM follows from object movement. Specifically, DSM arises in Delaware because non-prototypical agents (i.e. inanimate or obviative) are generated in a lower base position than prototypical agents (i.e. animate), which allows DSM for non-prototypical agents to be conditioned by movement to a higher position in the same way as DOM.

This paper examines two theoretical questions through the lens of an Algonquian language. First, what is Diesing’s VP as in current articulated syntactic structures? Second, how a unified syntactic account is developed to explain the complex patterns of DOM and DSM? Algonquian languages can help to pinpoint the answer to the two theoretical questions as their clausal structure has been argued to include both the VP layer and the VoiceP layer (Tollan & Oxford 2018); additionally, Delaware displays both DOM and DSM in the same suffix position. To answer the first question, I show that Diesing’s VP, which splits the syntactic tree into two parts with respect to the semantic interpretation of arguments, does not correspond to a particular fixed position but rather aligns with the edge of the verbal phase. As for the second question, Delaware sheds light on how DAM phenomena can be unified under a single syntactic account in which not only DOM but also DSM is dependent on the syntactic position of the nominal.

This paper is organized as follows: Section 2 presents the theoretical framework of Diesing’s Mapping Hypothesis and how it is situated in the context of differential peripheral agreement in Delaware. Section 3 discusses in details how DOM and “no DSM” follow the prediction of this movement-based analysis. Section 4 shows that the seemingly problematic occurrence of DSM involving inanimate and obviative agents in fact follows a Diesing-style analysis nicely. Section 5 concludes the paper.

2. Background

Diesing (1992) is a foundational work that linked the semantic interpretation of indefinites to their syntactic representations. Simply speaking, her Mapping Hypothesis (MH) assumes VP to be the crucial boundary splitting the tree into nuclear scope (i.e. VP-internal) and restrictive clause (i.e. VP-external). The MH holds that an indefinite object that remains inside VP is mapped onto the nuclear scope and a definite object that undergoes movement is mapped onto the restrictive scope. Under a Diesing-style analysis, the cross-linguistic DOM arises due to argument’s syntactic height and accessibility of the probe, that is, as schematized below, definite objects are moved out of VP and become syntactically accessible.
to the probe thus are indexed by overt agreement marking, (5a), while indefinite objects remain inside VP and are syntactically inaccessible thus left unindexed, (5b).

(5) Derivation of DOM (based on Diesing 1992)

a. definite object: VP-external, accessible for Probe

 ![Diagram](image)

b. indefinite object: VP-internal, inaccessible for Probe

 ![Diagram](image)

When the MH is extended to differential argument marking, two predictions can be identified: for DOM languages, the marked object with the definite interpretation must be located outside VP, and the unmarked object with indefinite interpretation must stay inside VP; second, a parallel pattern of DSM should not appear because the base position of the external argument is already VP-external.

(6) Predictions of the MH

a. DOM pattern: in order to receive a definite interpretation, the object must move outside of the VP; movement to a higher position makes the object accessible to the probe.

b. No DSM pattern: the subject is already outside of the VP; it will always be high enough to be accessible to the probe regardless of its definiteness.

Mapping Diesing’s model to current syntactic structures, it is not clear whether her “VP” corresponds to RootP, vP, or VoiceP, since Diesing’s proposal was made before the development of more articulated syntactic structures. Algonquian serves as a great diagnostic tool as it has all three layers – RootP, vP and VoiceP. Following existing work, morphological positions on the Algonquian verb are argued to correspond to four distinct heads in the syntax: the morpheme called final is little \(v^0 \) (Britain 2003), the morpheme termed theme sign is Voice\(^0\) (Oxford 2014), the primary argument agreement morpheme is Infl\(^0\) (Ritter & Wiltschko 2009), and the peripheral argument morpheme is C\(^0\) (Halle & Marantz 1993; Branigan & MacKenzie 1999). As illustrated in (7), the linear sequence of the morphemes \(mpákama-wona \) corresponds to Root-Voice\(^0\)-Voice\(^0\)-Infl\(^0\)-C\(^0\) (reversed by Baker’s Mirror Principle).

(7) Algonquian transitive verb template

a. …-Root -\(v^0 \) -Voice\(^0\) -Infl\(^0\) -C\(^0\)

 …-Root-final-theme-central-peripheral

b. \(n \)- paka -\(m \) -\(á \) -\(wamā \) -\(Ø \)

1- hit -TA -3.OBJ -1PL -AN.SG

“We hit him.” (Goddard 1979: 35)

Therefore, the morphemes in (7b) can be analyzed as follows. The final -\(m \) is the spell-out of \(v^0 \), which verbalizes the root and establishes the class of the verb as TA (transitive verb taking an animate object argument). The theme sign -\(á \) is the spell-out of Voice\(^0\), which agrees for person with the animate object. Infl\(^0\), which agrees with the first-person subject, undergoes finission so its exponence is split into two places: the prefix -\(n \) ‘1’ and the central suffix -\(wamā \) ‘1PL’. Lastly, the peripheral agreement realizes C\(^0\), which agrees with the 3SG object. The peripheral agreement position is crucial to this paper because the outcome of peripheral agreement depends on the syntactic height of the argument being indexed, namely, the definite object moves to a higher position than its indefinite counterpart. As a result of this difference in height, the agreement probe on the functional head C\(^0\), which is realized as the peripheral suffix, can access a definite object but not an indefinite one. In next section, I show that the MH analysis predicting the occurrence of DOM but not DSM is nicely followed in Delaware.
3. What follows the MH

As discussed above, Algonquian conforms with the prediction of the MH in which the peripheral agreement shows DOM but not DSM. Starting with the DOM examples involving animate objects (repeated below as (8)), as introduced earlier, -á is object agreement on Voice⁰ which is valued by the person feature of 3p object. After Voice⁰ valuation, what is crucial at this stage is that, following the MH, only a definite 3PL object moves to Spec-VoiceP, as illustrated schematically in (9a). By contrast, an indefinite 3PL object does not move, remaining inside of RootP after its person feature is agreed with by Voice⁰, as illustrated in (9b). Due to movement, the definite object in (9a) is high enough and is thus accessible for C⁰ to agree with later on; the successful occurrence of agreement with the 3PL object enables C⁰ to be spelled out overtly as -ak. On the other hand, the indefinite object in (9b) is too low for C⁰ to reach, therefore the valuation relation cannot take place, accordingly there is no spell-out of agreement on C⁰.

(8) a. n- ne-w -á -w [ak] lónśw -ak
 1- see -3.OBJ -1SG -AN.PL man -AN.PL
 ‘I saw the men.’

b. n- ne-w -ā -hm lónśw -ak
 1- see - 3.OBJ -1SG man -AN.PL
 ‘I saw some men.’ (Goddard 1979: 158)

(9) Analysis of DOM (based on Diesing 1992)
 a. object: moved, definite, accessible for C
 Probe [VoiceP SUBJ OBJ [vP ... t ...]]
 [moved, f chores]
 b. object: unmoved, indefinite, inaccessible for C
 Probe [VoiceP SUBJ [vP ... OBJ ...]]
 [unmoved, f chores]

The informal notion of “high enough” and “too low” for C-agreement can be formally captured by Chomsky’s Phase Impenetrability Condition (PIC), which holds that a syntactic object is not accessible to operations that take place outside of its phase, as expressed in (10).

(10) Phase Impenetrability Condition (Chomsky 2000: 108)
 In phase α with head H, the domain of H is not accessible to operations outside α, only H and its edge are accessible to such operations.

 Simply speaking, the probe on C⁰ is only able to access nominals that are in the same phase as C⁰ or at the edge of the next phase (i.e. the specifier or head of VoiceP). Since Spec-VoiceP is at the phase edge while vP is not, the definite object in Spec-VoiceP is accessible to C⁰ while the indefinite object staying in vP is not. In essence, it is PIC that determines whether a nominal’s position is high enough to be accessible for C⁰ or not. Since DOM with inanimate objects follows exactly the same mechanism as with the animate ones, I skip showing the analysis of DOM with inanimate objects to save space.

 As for “no DSM” pattern, recall transitive third-person animate subjects, as we saw in (2) (repeated below as (11)), the subject is indexed by peripheral agreement, but unlike the patterning of peripheral agreement with objects, the contrast of definiteness is no longer distinguished but collapsed into one form. That is, a third-person subject, unlike a third-person object, can be indexed by peripheral agreement regardless of whether it is definite or indefinite.

(11) nǐ- mīl -əkw -w [ak]
 1- give.to -INV -1SG -AN.PL
 ‘They/some people give to me.’ (Goddard 1979: 174)
The insensitivity of transitive subjects to differential marking is also captured by the MH. Unlike objects, the movement to escape vP does not distinguish between different kinds of subjects since the subject is generated in Spec-VoiceP, which is already a vP-external position, see the schematic representation in (12). This means that the subject is inherently accessible to C-agreement even if no further movements take place, which explains the across-the-board occurrence of peripheral agreement regardless of definiteness in (11).

(12) Analysis of no DSM: vP-external subject is accessible for C

\[
C^0 \quad [\text{VoiceP} \quad \text{SUBJ} \quad [vP \quad \ldots \text{OBJ} \ldots]]
\]

In addition, intransitive third-person subjects also follow the same pattern as the transitive subjects in not showing DSM. As (13) exemplifies, the subject is always indexed regardless of its definiteness. Slightly different from the clausal structure of the transitive verbs, intransitive verbs have been argued to lack a VoiceP layer in Algonquian (Tollan & Oxford 2018). Intransitive subjects are thus generated in Spec-vP. Now we face a problem: why does the vP-internal area (i.e. Spec-vP) become accessible in (13), given the intransitive subjects are overtly indexed by PA?

(13) No DSM: intransitive

a. kontké· -w -ak länšw -ak
dance -3 -AN.PL man -PL

‘The/some men dance.’ (Goddard 1979: 167)

b. maxké· -w -al
red -3 -IN.PL

‘These/something (inan.) are red.’ (Goddard 1979: 170)

I propose that Diesing’s “VP” boundary is not a fixed position but rather the edge of verbal phase (Chomsky 2001). Therefore, varying by clause type, the VP-internal area of Diesing’s model then respectively corresponds to vP in a transitive clause, as in (14b), but RootP in an intransitive clause, as in (14c).

(14) The crucial boundary of the MH

a. Diesing’s model b. transitive clause c. intransitive clause

\[
\begin{align*}
\text{IP} & \quad \text{CP} & \quad \text{CP} \\
\ldots & \quad \text{VP} & \quad \text{InflP} & \quad \text{InflP} \\
V & \quad \text{VoiceP} & \quad vP & \quad \text{vP} \\
\ldots & \quad \text{RootP} & \quad \ldots & \quad \text{RootP}
\end{align*}
\]

As seen above, the boundary of the MH is really the edge of the verbal phase rather than a fixed projection. For intransitive verbs, the phase edge is at Spec-vP due to lacking a VoiceP layer and Diesing’s restrictive scope then corresponds to the RootP-external area. Consequently, the examples of (13) where intransitive subjects do not show differential marking still are well captured by the MH: as schematized in (15), their base position in Spec-vP is syntactically high to be accessed by C^0, so intransitive subjects are always overtly indexed by peripheral agreement.
Derivation of no DSM with intransitives

\[\begin{align*}
C^0 & \rightarrow \text{InfP} \rightarrow \text{P} \\
 & \rightarrow \text{SUBJ} \rightarrow \text{RootP} \rightarrow \text{Root} \\
\end{align*} \]

edge, \text{aux}

To sum up, peripheral agreement in Delaware provides the persuasive evidence in support of the MH. The semantic interpretation of definiteness of the object correlates with whether the object has undergone movement, as does the occurrence of peripheral agreement with the object. The absence of DSM for animate transitive subjects and intransitive subjects also confirms the insight of the MH: since such arguments are generated at the phase edge regardless of their definiteness, the absence of differential agreement again corresponds with the external argument’s syntactic position.

4. Delaware DSM

Now I move on to two particular kinds of subjects that exceptionally contradict the “no DSM” prediction. I argue that these two cases can still be analyzed as falling nicely under the proposals of Diesing. It was shown above that the transitive subject is generated at the phase edge and thus does not trigger a differential pattern in the peripheral agreement, since it is always high enough to be accessed by \(C^0 \) (cf. (11) and (12)). However, all of the transitive examples given above are animate proximate subjects. When the subject of the transitive verb becomes inanimate or obviative, the differential peripheral agreement reappears. In the following subsections (§4.1 for inanimate subjects and §4.2 for obviative subjects), I present the data and propose that these two kinds of subjects reinforce the core insight of the MH: different syntactic positions lead to different semantic interpretations. The key observation is that the kinds of subjects that exceptionally show differential agreement, i.e. inanimate and obviative subjects, are non-prototypical agents, as they are lacking in either animacy, topicality, or both. I will accordingly propose that these agents are generated in a lower position than full-fledged animate agents, which allows them to participate in the same movement-driven differential agreement pattern as that shown by objects.

4.1. Inanimate subjects

In contrast to the animate transitive subjects shown previously in (2), which do not show a differential peripheral agreement pattern, the differential marking pattern reappears if the subject is inanimate. Recall the pattern in (1), repeated as (16), it poses a challenge to Diesing’s MH since the subject of the transitive clause is located in Spec-VoiceP (cf. (12)), it should be accessible to C-agreement regardless of its definiteness, as shown in the previous section for animate subjects. The question arises: why do inanimate subjects trigger a differential subject agreement pattern while the animate subjects do not?

(16) **Delaware DSM: inanimate subject**

a. \(n\text{-}t\text{omso}\cdot\text{-}k\text{w} \rightarrow \text{e} \rightarrow \text{a} \rightarrow \text{al} \) \(\rightarrow \text{paxski-kan} \rightarrow \text{-al} \)

1- cut -INV -1PL -IN.PL knife -PL

‘The knives cut us.’

b. \(n\text{-}t\text{omso}\cdot\text{-}ko \rightarrow \text{hna} \) \(\rightarrow \text{paxski-kan} \rightarrow \text{-al} \)

1- cut -INV -1PL knife -PL

‘Some knives cut us.’ (Goddard 1979: 159)

It may be tempting to consider Aissen (2003)’s prominence distinctions in that it holds cross-linguistically that more prominent subjects are unmarked while less prominent subjects are marked. With regards to the different patterning associated with animacy, this prominence account explains that the inanimate subject requires differential marking because it is less marked on the prominence scale, while the animate subject does not need differential marking because it is more marked. The problem for Aissen’s approach is that it cannot handle the different patterns shown by Algonquian DOM and DSM. In a nutshell, Aissen’s work assumes that DSM is the mirror image of DOM. Since the subject pattern mirrors the object pattern, we should expect a DOM pattern such as the following: an inanimate object should not trigger DOM as it
is less marked, while an animate object should trigger DOM as it is more marked. This is the mirror-image of the pattern shown by subjects, but, as we have seen, it is not what happens in Delaware. In fact, regardless of the object's animacy, whether animate or inanimate, the object always shows DOM. For the purposes of differential agreement in Algonquian, the animacy of the subject matters, but the animacy of the object does not.

In fact, there is a way to understand the existence of inanimate DSM that does not contradict Diesing’s MH. I propose that the DSM pattern associated with animacy is closely tied to the syntactic representations of animate and inanimate agents. Differences in semantic interpretation correlate with differences in the syntactic representation, as in the core insight of the MH. Algonquian languages have been argued to exhibit two layers of light verb phrases, VoiceP and vP (Tollan & Oxford 2018; cf. Massam 2009 for Niuean), which differ in introducing external arguments with different kinds of semantics: more volitional agents are introduced by VoiceP while less volitional agents are introduced by vP. I extend Tollan and Oxford’s analysis of volitionality to animacy. I propose that inanimate subjects must always be introduced by vP rather than VoiceP because an inanimate subject is inherently not a prototypical AGENT argument with volitional force but rather a “doer” argument.

The previous DSM examples with inanimate subjects can be derived as follows, the definite inanimate subject is triggered to move from Spec-vP to Spec-VoiceP to receive the definite reading following the MH, which makes it syntactically accessible for C0 to target, therefore resulting in its indexation by C-agreement, (17a). In contrast, the indefinite inanimate subject remains in its base position inside vP, syntactically too low to be agreed with by C0 (recall the phase edge is at Spec-VoiceP for transitive clauses). This derives the absence of peripheral agreement for indefinite inanimate subjects, (17b).

(17) Derivation of inanimate DSM

a. definite subject, moved, accessible for C

\[C^0 \left[\text{InfP} \ [\text{VoiceP} \ \text{SUBJIN} \ [\text{vP} \ \text{t} \ [\text{RootP} \ \text{OBJ}]]] \right.

\[\text{moved, } \checkmark \ \text{AGR} \ldots \ldots\ldots\ldots\]

b. indefinite subject, unmoved, inaccessible for C

\[C^0 \left[\text{InfP} \ [\text{VoiceP} \ [\text{vP} \ \text{SUBJIN} \ [\text{RootP} \ \text{OBJ}]]] \right]\]

\[\text{unmoved, } \times \ \text{AGR} \ldots \ldots\ldots\ldots\]

There is precedent in the literature on Algonquian languages for proposing a difference in the syntactic representation of animate and inanimate subjects. Ritter & Rosen (2010:139) discussed a restriction in Blackfoot in which the external arguments of TA/TV verbs must be animate because grammatical animate nouns denote “entities capable of exercising will (i.e., people and animals)”. Interestingly, a subject that is grammatically animate but semantically inanimate is prohibited in Blackfoot. For instance, the sentence ‘The knife cuts those branches’ shown in (18a) is disallowed even though isttoáíına ‘knife’ is a grammatically animate noun. Since animate agents introduced by VoiceP are required to be volitional in Blackfoot, (18a) is prohibited because the agent ‘knife’, despite being grammatically animate, is semantically unable to exercise volition or will. Cross-linguistically, not all Algonquian languages are subject to the same restriction. Little (2018) discovered in her fieldwork that a similar sentence was allowed in Mi’gmaq (Eastern Algonquian), shown in (18b). I suggest that the grammaticality of semantically inanimate subjects in Mi’gmaq is possible because less-volitional/non-volitional EAs are introduced by vP in Mi’gmaq, avoiding the conflict faced by Blackfoot.

(18) Variations of semantically inanimate subject

DEM-3 knife-3 cut-IN.OBJ-3SG DEM-IN.PL branch-IN.PL
‘That knife cut those branches.’ (Blackfoot, Frantz 1991: 45)

b. Tma’gittaqan tems’-g psetgun

saw.IN cut.TI-3 branch.IN
‘The saw cuts the branch.’ (Mi’gmaq, Little 2018: 133)
4.2. Obviative subjects

The other case that seems to violate the MH comes from the forms involving an obviative subject. In Algonquian, when the subject and the object are both third person and animate, a grammatical distinction of PROXIMATE/OBVIATIVE must be made to differentiate the two third persons. Typically, the NP marked as proximate refers to the more topical argument in discourse; the NP marked as obviative on the other hand refers to the less topical argument. As shown in (19), similar to the inanimate subject of a transitive verb (cf. (16)), an obviative subject of a transitive verb is also exceptionally able to trigger DSM. When the obviative subject is definite, as in (19a), it is indexed by peripheral agreement (−al ‘obv’), while when the obviative subject is indefinite, as in (19b), it is not indexed by peripheral agreement. Note that a peripheral suffix does appear in (19b), but it is indexing the definite proximate object rather than the indefinite obviative subject indicated by the verb form lacking the third person prefix wə-. Therefore, the obviative subject is completely unindexed by agreement in (19b).

(19) Delaware DSM: obviative subject

a. wə nəhl -ökəkw -w −al
 3- kill -INV -3SG -OBV
 ‘He/They obv killed him.’

b. maxkw-al nəhl -ökəkw -w -Ø
 bear-obv kill -INV -3 -AN.SG
 ‘A bear/Some bears obv killed him.’ (Goddard 1979: 158-9)

To make it clear that DSM is triggered by the obviative subject, (20) provides the contrastive example in which the subject is not obviative but proximate. As we can see, again DSM disappears as predicted: the proximate subject is always indexed by peripheral agreement, with the same form being used regardless of its definiteness. Only obviative animate subjects, not proximate animate subjects, give rise to DSM.

(20) lo·sw -e· -w −ak
 burn -3.OBJ -3 -AN.PL
 ‘They/some peopleprox burned a/some ... (animate, obv).’ (Goddard 1979: 174)

The differential agreement pattern shown by obviative subjects in (19) is surprising. Since the obviative arguments are animate agents, we would expect them to be introduced by VoiceP. Accordingly, they should pattern with prototypical animate subjects, not showing DSM. Now the question is: why does DSM arise with animate obviative subjects? In the following, I argue that we cannot simply assume that obviatives will have the same syntax as proximates; instead, I propose that obviative subjects are introduced in a syntactically lower position than prototypical animate proximate subjects, originating in Spec-vP like inanimate subjects.

Treating obviative animates as having distinct properties from proximate animates is not a completely new proposal. Muehlbauer (2008) argued for Plains Cree that proximate third persons are perspective holders (i.e. “intentional”) because they are represented as having mental processes directed at something; however, obviative third persons are not perspective holders (i.e. “extentional”) as they are not represented as having mental processes directed at anything. Muehlbauer’s insight echoes the status of animate agents discussed above in terms of the semantics of volition. Under Muehlbauer’s analysis, obviative third persons are quite similar to inanimates in not being perspective holders. Piriyawiboon (2007) took an even more extreme position along the same lines, positing that obviatives are actually treated as being syntactically inanimate. Her proposal is motivated by a ubiquitous morphological syncretism between the inanimate plural morpheme and the obviative morpheme across Algonquian languages (Delaware included, e.g. PA -al marks both ‘animate obviative’ and ‘inanimate plural’). Piriyawiboon considered the syncretism not as a coincidence but as evidence of the feature-geometric identity of animate obviatives and inanimate plurals. Therefore, Piriyawiboon claimed, “obviation in transitive clause is a gender shift process that turns an animate into inanimate noun to solve co-referencing conflict”.

Since obviative subjects are like inanimate subjects in the aspects argued above, I propose that they are also like inanimate subjects in being introduced by vP rather than VoiceP. Spec-vP can thus be understood as the position in which all “semantically deficient” agents are introduced, whether they are inanimate and thus lacking in volitionality altogether, or obviative and thus represented syntactically as being less than fully animate or volitional. Under this proposal, it follows that DSM should be triggered by obviative agents, just as it is by inanimate agents.

To be fully explicit, the differential agreement pattern shown by the obviative-agent forms in (19) above is derived as follows. The obviative agent is introduced in Spec-vP. When definite, as in (21a), the obviative agent moves to the phase edge, i.e. Spec-VoiceP, as required by the MH. Since the definite proximate patient is also required by the MH to move to the phase edge, both the agent and the patient will be located in equidistant multiple specifiers of VoiceP. Infl0 always agrees with the argument that has the richest phi-features, so it will agree with the proximate patient, which has a [Proximate] feature that the obviative argument lacks (Lochbihler 2012). As for C0, the proximate and obviative third persons are both accessible and could both theoretically be targeted by C-agreement, but according to Activity Condition (Chomsky 2001), the proximate argument that was already agreed with by Infl0 is inactive in comparison to the active obviative argument, so C0 prefers to target the obviative argument. This results in the overt spell-out of C0 as -al, indexing the obviative subject (cf. (19a)). As for (19b), where the obviative agent is indefinite and is unindexed by peripheral agreement, this is a form in which the MH requires the obviative subject to remain in Spec-vP in order to receive an indefinite reading, rather than moving to Spec-VoiceP. Infl0 will again target the proximate argument for the same reasons as in (21a). When it comes to C0, the obviative argument in (21b) is too low to be accessible, as it is inside of vP; the proximate argument is thus the only accessible target for C-agreement and is thus agreed with by C0.

(21) Derivation of obviative DSM

a. definite subject, moved, accessible for C

\[
\begin{align*}
\text{C}^0 & \ [\text{InflP} \ [\text{VoiceP} \ PROX_j \ \text{OBV}_i \ [vP \ t_i \ [\text{RootP} \ t_j]]]
\end{align*}
\]

\[
\begin{align*}
\text{(moved, active, } \check{\text{AGB}}) \\
\end{align*}
\]

b. indefinite subject, unmoved, inaccessible for C; but the proximate object is accessible

\[
\begin{align*}
\text{C}^0 & \ [\text{InflP} \ [\text{VoiceP} \ PROX_j \ [vP \ OBV_{IND} \ [\text{RootP} \ t_j]]]
\end{align*}
\]

\[
\begin{align*}
\text{(too low, inaccessible, } \check{\text{AGB}}) \\
\end{align*}
\]

\[
\begin{align*}
\text{(accessible, } \check{\text{AGB}}) \\
\end{align*}
\]

In summary, the two cases of DSM appear to contradict Diesing’s model at first glance, but they ultimately turn out to support the core of her MH. If we assume that inanimate and obviative subjects are base-generated in Spec-vP, their semantic interpretation of definiteness will correlate with whether they have shifted outside of the existential-scope (i.e. vP-internal area), as is the case for objects. The conditioning of differential peripheral agreement with these exceptional subjects follows from exactly the same principles as DOM: the outcome of C-agreement depends on whether or not the nominal is syntactically high enough to be accessible to C0 to agree with, parallel to DOM patterns in section 3.

5. Conclusion

In conclusion, Diesing’s Mapping Hypothesis is insightfully correct in capturing Algonquian DOM associated with definiteness and DSM related to animacy, obviation, and definiteness. This paper employs the understudied language Delawaretosupport the theoretical work of Diesing in relating semantic interpretation to a syntactic account. In particular, the semantic interpretation of an argument’s definiteness is conditioned by its syntactic position. I have shown that the morphosyntax of the Algonquian verb provides clear evidence that Diesing’s “VP” corresponds to the verbal phase edge, which draws the crucial boundary setting the definite-meaning domain apart from the indefinite-meaning domain. Moreover, with regards to the details of the peripheral agreement that manifests DOM and DSM in the investigated
language, it is the syntactic head C^0 that is responsible for the agreement pattern. The probe on C^0 targets third-person nominals, which must be in the same phase as C^0 or at the edge of the next phase in order to be accessible to C^0. When more than one accessible third-person nominal exists, the Activity Condition requires C^0 to target the one that has not already been agreed with. These assumptions are sufficient to derive the complex patterns shown by peripheral agreement.

Although it may appear that Diesing’s MH is only able to capture DOM and not DSM, this paper has shown that the MH can also account for a limited type of DSM. As argued in §4.1, unlike animate subjects, inanimate subjects originate in Spec-vP rather than Spec-VoiceP. In addition, through a closer examination of obviative subjects in §4.2, I show that they are syntactically alike inanimate subjects. Consequently, the uniquely low base position of these non-prototypical subjects makes it possible for them to undergo the same definiteness-conditioned movement to the phase edge that affects objects, thus allowing DSM with non-prototypical subjects to follow form the same principles as DOM. By attributing the differential agreement effect to argument’s syntactic height, it derives a complex pattern of agreement alternations conditioned by definiteness in a simple way, without needing to stipulate that the agreement head actually probes for a [Definite] feature.

Above all, by investigating the complex patterns of peripheral agreement in Delaware, it renders support to Diesing’s movement-based account of the interesting phenomenon of differential argument marking. As argued in this paper, a nominal’s semantic interpretation with regards to definiteness correlates precisely with its syntactic representation. The versatile patterning of Algonquian peripheral agreement, which is able to manifest both DOM and DSM in the same position but with different conditioning, provides us with a unique lens to enable a unifying treatment of the two phenomena with one syntactic account.

References

