Indonesian Crossed Control:
Expanding the Typology of Restructuring

Mike Berger

1. Introduction

In Indonesian, certain predicates embedding a passive(-like) complement give rise to an ambiguity between a normal control (NC) and a 'crossed' control (CC) reading (see e.g. Musgrave (2001), Gil (2002)).

(1) Siti mau / benci / coba [di-cium oleh Ali]
 Siti want / hate / try PASS-kiss by Ali
 a. 'Siti wants / hates / tries to be kissed by Ali' NC
 b. 'Ali wants / hates / tries to kiss Siti' CC

In NC, the matrix DP is the controller of the matrix verb and the Patient of the lower clause. In CC, the lower DP is the controller of the matrix CC predicate and the Agent of the lower clause - this is the 'crossed' alignment of arguments. Note that the thematic relation in the lower clause is invariant - what varies is the understood subject of the matrix CC predicate: in NC, it is the Patient of the lower clause, while in CC it is the Agent of the lower clause.

(2) [\[1a\] = want / hate / try (Siti, kiss (Ali, Siti))]
 [\[1b\] = want / hate / try (Ali, kiss (Ali, Siti))]

I propose that NC clauses are standard control or subjunctive clauses - I will not focus on these. CC clauses, on the other hand, instantiate Reverse Restructuring, wherein an underspecified Restructuring voice head Voice_R in the matrix clause inherits the φ-features of Voice in the embedded clause. The paper is organized as follows: in section 2, I provide the relevant background on voice in Indonesian; section 3 juxtaposes NC and CC clauses, showing that they are underlyingly distinct; section 4 provides the analysis, and section 5 discusses previous approaches to CC; finally, I consider CC from an Austronesian perspective. Before continuing, note that Crossed Control is a term I have adopted from the literature, but which will prove unfortunate under the analysis to be proposed. Do not look for PROs and indices - think of NC and CC as denoting 'normal' and 'crossed clauses', rather than 'control'.

2. Voice in Indonesian

Indonesian has an Agent Voice marked by meN- (3), a zero-marked Patient Voice (4) and a passive marked by di- (5) (Arka & Manning 1998, Sneddon 2010). The passive demotes the Agent to adjunct, but the Patient Voice retains the Agent.

AGENT VOICE

(3) Ali mem-baca buku
 Ali AV-read book
 'Ali read a book'

PATIENT VOICE

(4) Buku itu *(kau) Ø-baca
 book that 2SG PV-read
 'You read the book'

* University of Leipzig. I thank Sandhya Sundaresan, Martin Salzman, Thomas Grano, and the audiences at WCCFL 36 and AFLA 25 for their comments. I am also grateful to my informants Sri Hartati Berger and Jasmin Schreiber, and three anonymous reviewers.

2.1. The Patient Voice

Indonesian T has an EPP, and the Patient in the Patient Voice is a true subject in Spec,TP (Arka & Manning (1998), Vamarasi (1999), Voskuil (2000)). Unlike the Agent in the Agent Voice, the obligatory Agent in the Patient Voice must be strictly left-adjacent to V (6), cannot be phrasal (7), and is restricted to pronouns and proper names (Arka & Manning (1998), Sneddon (2010)). Following Levin (2015), I assume that the Agent pseudo-incorporates from Spec,VoicePV into VoicePV, thereby ceasing to be an intervener for the Patient’s later movement to Spec,TP. I take this pseudo-incorporation to be an obligatory operation triggered by the Patient Voice head VoicePV - it is a defining property of VoicePV itself, along with the Patient’s later movement to Spec,TP in order to become a surface subject1.

Agent extraction

(6) **AGENT VOICE**
 a. *Siapa, yang ti mem-baca buku?*
 who REL AV-read book
 'Who read the book?'

 PATIENT VOICE
 b. *Buku itu yang ti ∅-baca?
 who REL book that PV-read
 int.: 'Who read the book?'

Agent size

(7) **AGENT VOICE**
 a. Kami semua mem-baca buku
 1PL all AV-read book
 'We all read a book'

 PATIENT VOICE
 b. Buku itu kami (*semua) ∅-baca
 book that 1PL all PV-read
 'We all read the book'

2.2. Crossed Control with Patient Voice

The CC reading is also available in clauses which embed clauses in Patient Voice Nomoto (2008):

(8) **Kucing suka [aku ∅-pegang]**
 cat like 1SG PV-touch
 a. 'The cat likes me touching it' NC
 b. 'I like to touch the cat' CC

(9) **Anak mau [kamu ∅-peluk]**
 child want 2SG PV-hug
 a. 'The child wants you to hug it’ NC
 b. 'You want to hug the child’ CC

Even though the above glosses for the NC reading will turn out to be incorrect under the analysis to be propsed, we have the following generalization: CC is available with passive and Patient Voice complement clauses, which share the property of promoting the Patient to subject.

3. Normal versus Crossed Clauses

I now turn to properties distinguishing NC and CC clauses, showing that they are distinct.

3.1. Crossed Control involves Long Object Movement

It is a well-known fact about Indonesian that the (typically optional) Agent Voice prefix meN- is banned on movement paths of DP arguments (10) (Saddy 1992). In a clause ambiguous between NC and CC, the CC reading vanishes as soon as any verb bears meN- (which can optionally bear it; Nomoto 2008). This means that in CC, the matrix DP originates in the lower clause: it has undergone Long Object Movement (12-b). Conversely in NC, the matrix DP is merged in the matrix clause (in Spec,Voice3AVP; (12-a)).
A few welcome predictions follow from this. First, an embedded object pronoun coreferent with the matrix DP should be impossible with CC due to the position being occupied by the matrix DP’s trace - this is correct. Only the NC reading persists, as no Long Object Movement occurs, and only in NC can the empty embedded object position alternate with an overt pronoun coreferent with the matrix DP (Indonesian has pro-drop).

Second, only NC permits a phrasal embedded Agent, as the embedded verb in NC is in the Agent Voice, albeit without optional meN- (14). Finally, this also solves an apparent Minimality violation: the Patient in a CC clause with a Patient Voice complement clause is able to move to Spec,TP despite the structurally closer Agent, which however has incorporated out of Spec,VoiceP into VoiceP (15).

So clauses ambiguous between NC and CC, and which appear to embed Patient Voice actually embed either (i) Agent Voice with the verb lacking (optional) meN-, a simplex Agent and pro-drop - these are NC (16); or (ii) Patient Voice, which is zero-marked - these are CC (17). This is what I term the ‘contingent surface identity’ of NC and CC clauses: they are underlyingly distinct, but superficially indistinguishable when particular conditions obtain.

3.2. Truncated clause size

Due to the unavailability of a lower tense specification and a complementizer, CC complements must lack TP and CP (Polinsky & Potsdam (2008)) - i.e. they are VoicePs. A lower tense specification and / or complementizer block the CC reading:

Polinsky & Potsdam (2008): 1621
3.3. Interim summary

We have seen that clauses ambiguous between NC and CC can be disambiguated by the presence of certain material, and that they are actually distinct underlingly. In NC clauses, the complement clause is a CP; the matrix DP originates in the matrix clause; the matrix and embedded verbs are in Agent Voice, but may optionally lack meN; the embedded Agent is a phrasal intervener in Spec,Voice_{AVP}, and the embedded object position is pro-dropped. In CC clauses, on the other hand, the complement clause is a VoiceP; the matrix DP originates in the lower clause and moves into the matrix; the matrix verb is not voice-marked; embedded voice is passive or Patient Voice; the embedded Agent is a non-phrasal non-intervener, incorporated into Voice_{PV}; and the embedded object position is occupied by the matrix Patient DP’s trace. The differences are summarized in Table 1.

<table>
<thead>
<tr>
<th>Complement clause</th>
<th>Normal Clause</th>
<th>Crossed Clause</th>
</tr>
</thead>
<tbody>
<tr>
<td>Matrix clause</td>
<td>CP</td>
<td>VoiceP</td>
</tr>
<tr>
<td>Matrix DP</td>
<td>merged in matrix Spec,Voice_{AVP}, moves to Spec,TP</td>
<td>merged in embedded Comp,VP, moves to matrix Spec,TP</td>
</tr>
<tr>
<td>Matrix voice</td>
<td>Agent Voice</td>
<td>bare</td>
</tr>
<tr>
<td>Embedded voice</td>
<td>Agent Voice</td>
<td>Passive or Patient Voice</td>
</tr>
<tr>
<td>Embedded Agent</td>
<td>intervener, in Spec,Voice_{AVP}</td>
<td>non-intervener, incorporated into Voice_{PV}</td>
</tr>
<tr>
<td>Embedded Patient position</td>
<td>pro-drop</td>
<td>trace</td>
</tr>
</tbody>
</table>

Table 1: Differences between NC and CC

4. Analysis

Long object movement and truncated clausal complements are hallmarks of Restructuring, a construction where certain predicates in apparently bi-clausal structures permit ordinarily clause-bound processes such as clitic climbing or passivization (Wurmbrand (2001), Grano (2015)).

German Long Object Movement (Wurmbrand 2001: 330)

(20) weil der Wagen zu reparieren versucht / *behauptet wurde because the car to repair tried / claimed was 'because someone tried / *claimed to repair the car’
lit. 'because the car was tried to repair’

In Wurmband’s (2015) approach to Restructuring, Voice heads are taken to bear voice and φ-features. An underspecified Restructuring head Voice_{R} inherits φ- and voice features from a specified matrix Voice head via feature-sharing (think of Voice_{R} as anaphoric; (22)). This derives the obligatorily shared Agent between the matrix and embedded clause, and the fact that in some languages, embedded Voice morphology must match that in the matrix. It also models the systematic absence of embedded underlying Agents or their features in long passives.

4.1. Reverse Restructuring

This approach does not readily extend to CC. First, the matrix CC predicate is not voice-marked, neither with passive nor with Patient Voice complement clauses. We can rule out zero-marked Patient Voice on the matrix verb due to the absence of an incorporated Agent pronoun or proper name, a defining
property of the Patient Voice. Second, CC clauses with Patient Voice complements do host Agents, albeit incorporated ones. I therefore propose reverse Restructuring: an underspecified Voice\textsubscript{R} in the matrix clause inherits features of a specified Voice in the embedded clause (22). In Indonesian CC, this underspecified Voice\textsubscript{R} will inherit only ϕ-features, given that the matrix CC verb is bare of voice marking (see section 4.4).

(21) **Normal Restructuring:**
\[
\text{Voice}_{\text{A}}[v:A, \phi:B] \ldots \text{Voice}_{\text{R}}[v: \Box, \phi: \Box] \\
\Rightarrow \text{Voice}_{\text{A}}[v:A, \phi:B] \ldots \text{Voice}_{\text{A}}[v:A, \phi:B] \\
\]
\[\text{F-sharing}\]

(22) **Reverse Restructuring:**
\[
\text{Voice}_{\text{R}}[v: \Box, \phi: \Box] \ldots \text{Voice}_{\text{A}}[v:A, \phi:B] \\
\Rightarrow \text{Voice}_{\text{R}}[v: B, \phi:B] \ldots \text{Voice}_{\text{A}}[v:A, \phi:B] \\
\]
\[\text{F-sharing}\]

The Agent Voice head (meN-) merges an Agent in its specifier, and is the only one that assigns ACC (23-a). The Patient Voice head \emptyset- also merges an Agent, but which subsequently incorporates (23-b), and the passive head di- does not merge any Agent (23-c). These three voice heads are ϕ-valued either by the Agent in Spec, Voice\textsubscript{P} (AV, PV) or implicitly (PASS). As for the Restructuring voice head, it does not license an Agent, and must anaphorically pick up its ϕ-value - in this case from a c-commanded Voice head with valued ϕ-features (23-d).

(23) a. **AGENT VOICE**
\[
\begin{array}{c}
\text{Voice}_{\text{AV}} \downarrow \\
\phi:A \quad \text{VP} \\
\text{Voice}_{\text{PV}} \downarrow \\
\phi:A \quad \text{VP}
\end{array}
\]

b. **PATIENT VOICE**
\[
\begin{array}{c}
\text{Voice}_{\text{AV}} \downarrow \\
\phi:A \quad \text{VP} \\
\text{Voice}_{\text{PV}} \downarrow \\
\phi:A \quad \text{VP}
\end{array}
\]

c. **PASSIVE**
\[
\begin{array}{c}
\text{Voice}_{\text{PASS}} \downarrow \\
\phi:X \quad \text{VP} \\
\text{Voice}_{\text{PV}} \downarrow \\
\phi:A \quad \text{VP}
\end{array}
\]

d. **RESTRUCTURING**
\[
\begin{array}{c}
\text{Voice}_{\text{R}} \downarrow \\
\phi: \Box \quad \text{VP} \\
\text{Voice}_{\text{PV}} \downarrow \\
\phi:A \quad \text{VP}
\end{array}
\]

Let us derive a CC clause with Patient Voice, e.g. *Kucing suka kau pegang* 'You like to touch the cat' (Fig. 1, (24)). After the VP *pegang kucing* 'touch cat' is built, Voice\textsubscript{PV} (\emptyset-) is merged, along with the pronominal Agent *kau* 'you' in Spec, Voice\textsubscript{PV}P. *kau* values ϕ on Voice\textsubscript{PV} as 2SG, and subsequently incorporates into Voice\textsubscript{PV}. Next, the matrix CC verb *suka* 'like' is merged, and then underspecified Voice\textsubscript{R}. Voice\textsubscript{R} inherits the ϕ-features of the lower Voice\textsubscript{PV}. After T is merged, the embedded Patient *kucing* 'cat' moves to Spec,TP to satisfy the EPP on T and get NOM.

The derivation of a CC clause with a passive complement, e.g. *Ali coba di-cium oleh Siti* 'Ali tries to kiss Siti', proceeds similarly (Fig. 2, (25)). After Voice\textsubscript{PASS} (di-), which inherently specifies an implicit Agent, merges with the VP *cium Siti* 'kiss Siti'. The matrix CC verb *coba* 'try' and Voice\textsubscript{R} are merged, after which Voice\textsubscript{R} inherits the implicit Agent specification on Voice\textsubscript{PASS}. The Patient *Siti* then moves to Spec,TP, receiving NOM and becoming a surface subject. Unlike the Patient Voice variant, CC with passive complements may optionally merge a by-phrase specifying the implicit Agent.

2 Another reason the matrix CC predicate cannot be in Patient Voice is that Patient Voice is inherently transitive, requiring the presence of a nominal to-be-promoted object.

3 V-to-Voice movement is omitted for clarity.

4 When the Agent PP is omitted, the Agent is interpreted impersonally or contextually.
Figure 1: Derivation of CC with Patient Voice

(24) Kucing suka [kau Ø-pegang]
cat like 2SG PV-touch
‘You like to touch the cat’

Figure 2: Derivation of CC with passive
Only when the right conditions line up, i.e. when (i) the embedded clause is not headed by a (overt) complementizer, (ii) the embedded Agent is non-phrasal, (iii) the embedded Patient position is pro-dropped, and (iv) any verb which could optionally bear meN- does not bear meN-, do clauses like (24) and (25) also give rise to a NC reading. The syntax of NC clauses, which permits the just-mentioned properties that would block the CC reading, involves a conventional control or subjunctive clause.

4.2. Voice does not incorporate

I depart from Wurmbrand (2015) in assuming that the embedded Voice does not incorporate into matrix Voice. The possibility of low negation (26) and independent ellipsis of either the matrix CC predicate (27-a) or the lower VP (27-b) show that these do not form a syntactic unit (Polinsky & Potsdam (2008)).

Polinsky & Potsdam (2008): 1622

(26) Anak-anak mau [tidak di-belikan sepedah oleh ibu]
children want NEG PASS-buy bicycle by mother
'The mother wants not to buy the children bicycles'

(27) a. Mobil ini mau di-jual oleh Ali dan sepedah itu maus di-beli oleh Siti
car this want PASS-sell by Ali and bicycle that want PASS-buy by Siti
'Ali wants to sell this car, and Siti, to buy that bicycle'

b. Mobil ini mau di-jual oleh Ali dan sepedah itu mau di-beli oleh Ali juga
car this want PASS-sell by Ali and bicycle that want PASS-buy by Ali also
'Ali wants to sell this car, and his bicycle also'

4.3. CC is not Backward Control

Polinsky & Potsdam (2008) reject CC qua Backward Control, a construction where a covert matrix argument corefers with an overt embedded argument. On this approach, a silent PRO bound by the embedded oblique Agent occupies matrix Spec,TP, with the overt matrix DP occurring in an A’-position (28). This in turn would predict that the passive Agent should be able to bind a pronoun in subject position, given that PRO, coreferent with the Agent, would bind the pronoun prior to A’-movement. But the passive Agent cannot bind a pronoun in subject position, indicating that the passive Agent never c-commands the Patient (29); the same restriction is found in CC (30).

(28) [XP ‘Siti’i [TP PROi [VP1 ‘try’ [VP2 ‘be kissed’ i’re by Alii’]]]]

(29) Surat-nya,3SG di-baca t oleh semua orangi
letter-3SG PASS-read by all person
'Hisi letter was read by everyonei

(30) (Surat-nya,3SG mau <semua orangi,> di-baca t oleh semua orangi)
letter-3SG want PASS-read by all person
int.: 'Everyonei wants to read hisi letter'

4.4. Predicates which afford CC

Predicates affording CC, given in Table 2, fall into three types in terms of the category of their base: verbal, nominal and adjectival. While those with verbal bases are mixed with respect to whether they natively license direct objects and Voice morphology (these two properties seem to go hand in hand), no CC predicate with a nominal or adjectival base does, at least not natively without applicativization (the prefix ber- derives denominal and deadjectival intransitive verbs, not mark voice).
CC predicateVoice & Direct object?

V
coba 'try', minta 'request', benci 'hate'
mau/ingin 'want', gagal 'fail'
lupa 'forget', ingat 'remember', suka 'like'

A
berjaya 'succeed'

N
berhenti 'stop', berhak 'deserve', layak 'deserve'

<table>
<thead>
<tr>
<th>Base</th>
<th>CC predicate</th>
<th>Voice & Direct object?</th>
</tr>
</thead>
<tbody>
<tr>
<td>V</td>
<td>coba 'try', minta 'request', benci 'hate', mau/ingin 'want', gagal 'fail', lupa 'forget', ingat 'remember', suka 'like'</td>
<td>✓</td>
</tr>
<tr>
<td>A</td>
<td>berjaya 'succeed'</td>
<td>X</td>
</tr>
<tr>
<td>N</td>
<td>berhenti 'stop', berhak 'deserve', layak 'deserve'</td>
<td>X</td>
</tr>
</tbody>
</table>

Table 2: CC predicates (Nomoto 2008)

I have classified Indonesian CC as Restructuring based on the presence of Long Object Movement and a truncated complement, yet among CC verbs we find unexpected ones like layak 'deserve' or malu 'be shy', next to familiar Restructuring verbs like mulai 'begin' and coba 'try'. How exactly these verbs and the CC construction they afford relate to Restructuring cross-linguistically is ongoing research. As yet, it seems that all CC-inducing predicates are exhaustive control predicates - this is consistent with the generalization in Grano (2015) that only exhaustive control predicates may give rise to Restructuring.

5. Previous accounts

Previous approaches to CC are Polinsky & Potsdam (2008)'s optional thematic Raising, Nomoto (2008)'s optional Agree and Sato (2010)'s cross-clausal X₀-movement. Under Polinsky & Potsdam (2008)'s analysis, the CC predicate has the lexically idiosyncratic property of semantically selecting either DP in the complement clause as its Agent / Experiencer, without actually taking the respective DP as an syntactic argument (31). While their analysis is well-argued and consistent with binding, negation and ellipsis facts, it is restricted to mau/ingin 'want', and as such not extendable to the range of predicates permitting CC (unless we want to endorse rampant lexical idiosyncracy and redundancy). It also do not consider the blocking effect of meN- on the CC reading, and leaves unanswerd how the oblique Agent can associate with the CC predicate in a seemingly non-local fashion.

(31) \[CP \{ TP 'the child' [VP₁ 'want' [VP₂ 'be kissed'] [PP 'by mother']] \}]

![Figure 3: Nomoto’s (2008) analysis of NC/CC clauses](image)

In Nomoto (2008), both DPs sit on the vP edge: the (oblique) Agent is base-merged in Spec,vP, and the Patient has moved to an outer Spec,vP (Fig. 3). Both DPs are in a local-enough configuration for θ-role assignment, such that the matrix CC verb can optionally Agree with either DP: Agree with the higher Patient yields NC, whereas Agree with the lower Agent yields CC. Surface word order is then derived by
a separate linearization operation. While this solves the locality problem, it does so by brute stipulation. Neither optional θ-role assignment nor final linearization are independently motivated. Moreover, the account falsely predicts that the passive Agent should be able to bind a surface subject via reconstruction. However, as shown in section 4.3, the passive Agent cannot bind the passive Patient, neither in simple passives (29), nor in CC (30). This indicates that it never c-commands the passive Patient (Sato 2010).

Finally, Sato (2010) proposes that the embedded passive complex X_0-moves into the matrix CC predicate, which then optionally Agrees with either DP. Sato’s account is consistent with binding facts, but wrongly predicts that independent ellipsis of either the matrix CC predicate or the embedded predicate should be ill-formed, as well as low negation. Recall from section 4.1 that (i) low negation of the CC complement clause is well-formed (26), and (ii) that the matrix CC and the embedded passive predicate can be elided independently (27-a, 27-b).

All three accounts assign share the shortcoming of assigning a single structure to both NC and CC, but we have seen that they must be underlyingly distinct. All three rely on optionality, either in the form of optional thematic Raising (Polinsky & Potsdam 2008) or optional Agree (Nomoto 2008, Sato 2010). Nomoto (2008) and Sato (2010) prove especially inadequate, as they remain vague on or stipulate crucial steps such as linearization, how X^0-movement can feed θ-role assignment, and non-local Agree / θ-role assignment (Nomoto 2008; they also make false predictions about low negation, binding, and ellipsis. The proposed account resolves these issues: NC and CC clauses have distinct structures, so there is no optionality with respect to the controller choice of the matrix verb; Agree / θ-role assignment is local; the account is consistent with low negation, binding and ellipsis facts.

6. Restructuring in Austronesian

Now that CC has been identified as a kind of Restructuring, we can consider it alongside Restructuring in other Austronesian languages. The Austronesian languages investigated in Wurmbrand (2015) with respect to Long Object Movement fall into two classes: voice matching and default voice. In voice-matching languages, matrix and embedded voice match (32). In default-voice languages, embedded Voice is default (33) or bare, regardless of matrix Voice. See Table 3.

Isbukun Bunun (Wu 2013: 39): Voice matching

(32) a. **Miliskin** saikin [tu ma-baliv bunbun-cia]
 AV.want 1SG.NOM PRT AV-buy banana-that.OBL
 ‘I want to buy the bananas’

b. **Iliskinun**-ku [bunbun-a tu baliv-un]
 want.PV-1SG.ACC banana-that.NOM PRT buy-PV
 ‘I want to buy the bananas’

 lit. ‘The bananas are wanted to be bought by me’

Mayrinax Atayal (Chen 2010: 5ff.): AV is default

(33) **Naaqaru.un** [i tum.uting ni yumin] ku bawwak
 finish.PV LNK beat.AV,beat GEN Yumin NOM pig
 ‘Yumin finished beating the pigs’

 lit. ‘The pigs were finished to be beaten by Yumin’

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>PV</td>
<td>PV</td>
<td>✓</td>
<td>×</td>
<td>Chamorro, I. Bukun, Tsou</td>
</tr>
<tr>
<td>PV</td>
<td>AV</td>
<td>×</td>
<td>×</td>
<td>Atayal, T. Bunun, Puyuma, Amis, D. Seediq</td>
</tr>
<tr>
<td>PASS</td>
<td>bare</td>
<td>×</td>
<td>×</td>
<td>Acehnese</td>
</tr>
<tr>
<td>bare</td>
<td>PASS / PV</td>
<td>×</td>
<td>✓ (PV)</td>
<td>Indonesian</td>
</tr>
</tbody>
</table>

Table 3: Long Object Movement Restructuring in Austronesian
In Indonesian CC, the matrix verb is bare, and complements do host Agents when they are in the Patient Voice - Indonesian thus constitutes a novel Restructuring pattern with Long Object Movement. Note that Indonesian exhibits almost the inverse of Acehnese, where the embedded verb lacks voice morphology, but the matrix verbs is passive.

The Indonesian-specific pattern seems to fall out from two crucial factors: the resistance of CC predicates to Voice, and the incorporative status of the embedded Agent within VoiceP with Patient Voice on the other, the latter obviating the need for finite, NOM-assigning T. That CC is in part due to the morphological potential of the relevant verbs is supported by speaker variation: at least for the CC verb *coba* ‘try’, some speakers permit passive morphology to surface only on matrix *coba* ‘try (matrix Voice only; 35), or on both the matrix and the embedded verb (Voice doubling; 36). It so happens that *coba* is one of the few verbs which natively partakes in Voice alternation with the markers *meN-* (AV), *di-* PASS and Ø-(PV). For Voice doubling, the proposed system would simply have to allow certain verbs to inherit voice features in addition to φ-features. For matrix Voice only, we need simply resort to the analysis of ‘normal’ Restructuring as laid out in Wurmbrand (2015).

(34) Perampok **di-coba** [**di-tangkap oleh polisi**]
 thief PASS-try PASS-catch by police
 a. *‘The thief tried to be caught by the police’ NC
 b. ‘The police tried to catch the thief’ CC

(35) Perampok **di-coba** [**tangkap oleh polisi**]
 thief PASS-try catch by police
 a. *‘The thief tried to be caught by the police’ NC
 b. ‘The police tried to catch the thief’ CC

7. Conclusion

We have seen that NC and CC clauses are underlyingly distinct, ambiguous only when very particular conditions line up. I have argued that CC involves reverse Restructuring, a situation where an underspecified matrix Voice\(_\) inherits φ-features from an embedded verb. The proposed account fares better than previous ones, which rely on a single structure, optionality, and make false predictions. Most importantly, CC seems to constitute a novel Restructuring pattern within Austronesian.

References

Polinsky, Maria & Eric Potsdam (2008). The syntax and semantics of wanting in indonesian 118.

