Wh-indefinites Are Dependent Indefinites: A Study on shenme

Zhuo Chen

1. Introduction

Chinese *wh*-indefinites are found ungrammatical in simple affirmative episodic sentences, as shown in (1), but are licensed by negation, polar questions, antecedent of conditionals, modals, or future markers (Huang, 1982; Li, 1992; Cheng, 1994; Lin, 1998, 2004, 2014; Xie, 2007; Lin et al., 2014; Lin & Giannakidou, 2015). Sentences (2) to (8) demonstrate the distribution of *wh*-indefinites.

(1) *Wo mai-le shenme*
 I buy-ASP what
 Intended reading: *I bought something.

(2) Zhangsan *mei chi shenme dongxi*
 Zhangsan NEG eat what thing
 Zhangsan didn’t eat anything.

(3) Zhangsan *chi-le shenme ma?*
 Zhangsan eat-ASP what
 Did Zhangsan eat anything?

(4) Ruguo *ni you shenme wenti, jiu lai wen wo*
 If you have what question, then come ask me
 If you have any question, come and ask me.

(5) Suoyou *you shenme shiqing gen wo shuo de, keyi zhao wo.*
 All have what thing to me talk DE, can come find me
 All those who have something to tell me can come see me.

(6) Zhangsan *keneng kan-le shenme shu*
 Zhangsan possibly read-ASP what book
 Zhangsan may have read some book.

(7) *Ni bixu chi dian shenme*
 you must eat CL what
 You must eat something.

(8) Zhangsan mingtian *hui qu mai dian shenme song gei Lisi*
 Zhangsan tomorrow will go buy CL something give to Lisi
 Zhangsan will go to buy something as a present for Lisi.

Based on these findings, Lin (1998) gives *wh*-indefinites the name *existential polarity items* and proposes the Non-Entailment of Existence Condition (henceforth NEEC) on the distribution of *wh*-indefinites. Except (1), none of the other sentences entails there exists a referent of the *wh*-indefinite. In the same spirit, Xie (2007), Lin et al. (2014) and Lin & Giannakidou (2015) suggest that *wh*-indefinites are licensed by non-veridicality.

(9) Non-Entailment-of-Existence-Condition on EPWs (NEEC)
 The use of an EPW is felicitous iff the proposition in which the EPW appears does not entail existence of a referent satisfying the description of the EPW.

Recent research on *wh*-indefinites, however, poses a challenge to the non-veridicality generalization. Sudo (2010) and Kaneko (2011) found that Japanese *wh*-indefinites can be used in a simple affirmative episodic sentence to convey the speaker’s ignorance. Chen (2017) found similar facts in Chinese.

*Zhuo Chen, The Graduate Center, CUNY, zchen3@gradcenter.cuny.edu. I would like to thank Sam Alxatib for his support and comments on this project. I would also like to thank Chris Collins, Veneeta Dayal, Mana Kobuchi-Philip, Yeonju Lee, Haoze Li, Shi-yue Jeff Lin, William McClure, Jon Nissenbaum, Anna Szabolcsi, Qi Zhang and the participants at WCCFL35 for their helpful discussion and suggestions. Any remaining errors are mine.

(10) a. John-wa kinoo dare-ka-ni atteta yo
 John-TOP yesterday who-KA-DAT was.meeting PRT
 John was meeting with someone yesterday.
b. #honto? aitsu dare-ni atteta?
 #really he who-DAT was.meeting
 Really? Who was he meeting with?

(11) Zhangsan mai-le san ben shenme shu
 Zhangsan buy-ASP three CL what book
 Zhangsan bought three books of a certain kind, (the speaker does not know what kind it is).

In (10a), the use of *dare* indicates that the speaker does not know exactly who John was meeting with yesterday. This is why the follow-up question in (10b) which asks the speaker to identify the referent of *dare* is infelicitous. In (11), *shenme* also signals the speaker’s ignorance, as can be seen in the gloss of the sentence. What is important here is that both (10a) and (11) are simple affirmative episodic sentences which constitute veridical environments. (10a) does entail that there is a person who John met yesterday and (11) does entail that there is a certain kind of books that Zhangsan bought. Therefore, the grammaticality of these two sentences poses a challenge to Lin (1998) and his successors’ analysis.

In this paper, we will show that the challenge to the old analysis is actually on a larger scale using a set of new data. We will focus our discussion on the *wh*-indefinite *shenme* as a representative and attempt to show that the nature of *wh*-indefinites is not a sensitivity to polarity but a requirement of covariation with a licensing quantifier. This property of covariation puts *wh*-indefinites in a natural class with dependent indefinites that have been discussed in many other languages (Farkas, 1997; Balusu, 2006; Pereltsvaig, 2008; Yanovich, 2005; Brasoveanu & Farkas, 2011; Henderson, 2014). Therefore, we argue that *wh*-indefinites are dependent indefinites by nature.

2. Shenme and dependent indefinites

2.1. New data on shenme

Sentences (12) to (15) are all veridical sentences containing a *wh*-indefinite *shenme*, which, contrary to the prediction of the old analysis, turn out to be grammatical.

(12) Mei ge ren dou mai le dian shenme (dongxi)
 Every CL person DOU buy Asp CL what thing
 Everyone bought something. (False if everyone bought the same thing)

(13) Tamen dou mai le dian shenme (dongxi)
 They DOU buy Asp CL what thing
 They each bought something. (False if they all bought the same thing)

(14) Yiqian, Zhangsan jingchang zai xiaban lushang mai dian shenme huijia
 In the past, Zhangsan often on off work way buy CL what back home
 In the past, Zhangsan often bought something on his way back home. (False if Zhangsan bought the same thing every time)

(15) Zhangsan mai le dian shenme song gei Lisi
 Zhangsan buy Asp CL what give to Lisi
 Zhangsan bought something for Lisi, (the speaker does not know specifically what he bought).

In (12), *shenme* is licensed by a distributive quantifier *every*. In (13), *shenme* is licensed by a distributively interpreted subject *they each*. In (14), it is licensed by a pluralactional adverb *often*. When there is no overt licensor in the sentence, as in (15), *shenme* is licensed by the covert epistemic modal (Kratzer & Shimoyama, 2002). In each sentence, *shenme* covaries with the licensing quantifier and at least two different referents need to be assigned to it. Otherwise the sentence is false.1 The behavior of

1Sentences (12) to (14) also have an ignorance reading. However, due to the presence of an overt licensing quantifier, the ignorance is not obligatory. This obviation effect is also observed in Alonso-Ovalle & Shimoyama (2014), but they limit their discussion on a *wh*-indefinite embedded under *every* only.
covariation with a licensing quantifier exhibited by *wh*-indefinites echoes that of dependent indefinites, to which we now turn.

2.2. Dependent indefinites

Dependent indefinites are found in a variety of languages: Hungarian (Farkas, 1997), Telugu (Balusu, 2006), Russian (Perel'tsvaig, 2008; Yanovich, 2005), Romanian (Brasoveanu & Farkas, 2011) and Kaqchikel (Henderson, 2014). Dependent indefinites are different from plain indefinites in two ways. Morphologically, they are usually marked. Distributionally, they impose a semantic constraint of covariation. Following are some examples of dependent indefinites from different languages. The dependent indefinite in each sentence is bolded.

(16) **Hungarian**

A gyerekek hoztak egy-egy könyvet

The children brought a book each. (False if all the children brought the same book)

(17) **Telugu**

Prati pillavaaDu renDu renDu kootu-lu-ni cuus-ee-Du

every kid two two monkey-PL-ACC see-Past-3PSg

Every kid saw two monkeys. (False if there are two monkeys and every kid saw them at the same time and location)

(18) **Russian**

Každyj mal’čik vstretil kogo–nibud’ iz svoix odnoklassnic

Every boy met who–NIBUD’ of his girl-classmate

Every boy met one of his girl classmates. (False if they all met the same classmate)

(19) **Romanian**

Fiecare băiat a recitat cîte un poem

every boy has recited a poem

Every boy recited a poem. (False if there is exactly one poem and every boy recited it)

(20) **Kaqchikel**

K-onojel x-ø-ki-kano-j ju-jun wuj

E3p-all CP-A3s-E3p-search-SS one-one book

All of them looked for a book. (False if there is a book and all of them looked for it)

While a plain indefinite like *a girl* is known to be able to take either narrow scope or wide scope, dependent indefinites choose the narrow scope very stubbornly. When the wide scope reading of the dependent indefinite is attempted, i.e., when the referent of the indefinite does not vary, (16) to (20) are all false. Moreover, when embedded under a licensing quantifier, dependent indefinites covary with the quantifier semantically. Based on these data, we can conclude that dependent indefinites are subject to a particular semantic constraint: they have to covary with a licensing quantifier. Exactly the same constraint is exhibited by *shenme* in (12) to (15). Given this similarity, we argue that *shenme* is a dependent indefinite. In next section, we will present an analysis on *shenme* using the core elements of Dynamic Plural Logic (henceforth DPlL) (Brasoveanu, 2008; Henderson, 2014).

3. An analysis of *shenme* in DPlL

In the traditional static semantics, the meaning of a sentence is understood as its truth conditions. In dynamic semantics, however, a sentence is seen as an active construct that can update the context with

the values assigned to the variables it contains. In DPIL, a sentence is interpreted relative to a set of input assignment functions \(G\) and a set of output assignment functions \(H\). A set of assignment functions is called an information state and is represented as a matrix. Table 1 is an example. We give some definitions in our meta-language in (21) to (24). We define every as in (25) and shenme as in (26).

<table>
<thead>
<tr>
<th>Table 1: An example matrix</th>
</tr>
</thead>
<tbody>
<tr>
<td>(H)</td>
</tr>
<tr>
<td>(h_1)</td>
</tr>
<tr>
<td>(h_2)</td>
</tr>
<tr>
<td>(h_3)</td>
</tr>
<tr>
<td>(\ldots)</td>
</tr>
</tbody>
</table>

(21) \(G(i) = \{g(i) | g \in G\}\)
A set of assignment functions \(G\) taking a variable indexed with \(i\) will return a set of values, each assigned to \(i\) by an assignment function \(g\) in \(G\).

(22) \(g \approx_i h \Leftrightarrow \) for any index \(j\), if \(j \neq i\), then \(g(j) = h(j)\)
\(g \approx_i h\) if \(g\) differs at most from \(h\) on the value it assigns to \(i\).

(23) \(G \approx_i H \Leftrightarrow \) for all \(g \in G\), there is a \(h \in H\) such that \(g \approx_i h\), and
for all \(h \in H\), there is a \(g \in G\) such that \(g \approx_i h\)

(24) \(G\) is \(i\)-variant \(\Leftrightarrow \) \(G(i)\) is not a singleton set
\(G\) is \(i\)-invariant \(\Leftrightarrow \) \(G(i)\) is a singleton set
If all the assignment functions \(g\) in \(G\) assign the same value to \(i\), \(G\) is called \(i\)-invariant. If there are at least two assignment functions \(g_1\) and \(g_2\) in \(G\) that assign different values to \(i\), i.e. \(g_1(i) \neq g_2(i)\), then \(G\) is called \(i\)-variant.

(25) \(\llbracket [\text{Every}_i X] \, Y \rrbracket^{G,H} = 1\) iff \(\exists K \exists K'(G \approx_i K \& K(i) = [X]^{K,K'} \& \forall x \in K'(i)([Y]^{K',H}(x) = 1))\)

(26) \(\llbracket [\text{shenme}_j X] \rrbracket^{G,H} = \{x : \exists K \exists K'(G \approx_j K \& K(j) \subseteq [X]^{K,K'} \& K\text{ is }j\text{-variant }\& \exists y \in K'(j)([V]^{K',H}(y)(x) = 1))\}

Based on the entry for every and shenme, the truth condition for sentence (12) is as follows.\(^3\)

(27) \(\llbracket [\text{Every}_j \text{ student}] \text{ bought shenme}_j \text{ thing} \rrbracket^{G,H} = 1\) iff \(G \approx_{i,j} H \& H(i) = [\text{student}] \& H(j) \subseteq [\text{thing}] \& H\text{ is }j\text{-variant }\& \forall x \in H(i)(\exists y \in H(j)([\text{bought}](y)(x) = 1))\)

What’s crucial in the truth condition is the underlined conjunct, which, as we can see from (26), is a lexical requirement imposed by shenme. This requirement ensures that shenme is assigned at least two different values in the output context. Therefore, the sentence is true if and only if there are at least two different things that were bought across all the people under discussion.

When shenme is licensed by a pluractional adverb like often, it covaries with the plurality of events introduced by the adverb. We treat often as a sentential operator and define it as in (28). Often introduces a set of events \(\mathcal{E}\) whose cardinality exceeds a contextually determined threshold \(c\). The prejacent of the pluractional adverb is assumed to be a set of events, as in (29). We can now compose sentence (14) whose truth condition is given in (30).

\(^3\)Note that we are ignoring the classifiers in our composition. What classifiers contribute to the semantics of these sentences is definitely an important question and we leave this question for future research.
(28) \[p^{G,H} = 1 \text{ iff } \exists K(G \approx_i K & K(i) = \mathcal{E} \& |\mathcal{E}| > c \& \forall e \in \mathcal{E}(\mathcal{P}(K,H)(e) = 1) \]

(29) \[\text{Zhangsan bought shenme thing}^{G,H} = \lambda e. G \approx_j H \& H(j) \subseteq \text{thing} \& H \text{ is j-variant} \]
\[\& \exists y \in H(j)((\text{bought}(e) \& \text{Agent}(e, \text{Zhangsan}) \& \text{patient}(e, y))) \]

(30) \[\text{Zhangsan often bought shenme thing}^{G,H} \]
\[= 1 \text{ iff } G \approx_{i,j} H \& H(i) = \mathcal{E} \& |\mathcal{E}| > c \& H(j) \subseteq \text{thing} \& H \text{ is j-variant} \]
\[\& \forall e \in \mathcal{E}(\exists y \in H(j)((\text{bought}(e) \& \text{Agent}(e, \text{Zhangsan}) \& \text{patient}(e, y))) \]

Again, the underlined conjunct ‘H is j-variant’ in the truth condition ensures that for the sentence to be true, shenme has to be assigned at least two different values in the output context. In other words, this sentence is true if and only if there is a set of purchasing events with Zhangsan as the agent and with things as the patient and the cardinality of the set exceeds a contextually determined threshold so that it can be called often, and across all the purchasing events, at least two different things were bought.

Finally, for the ignorance reading, we assume that there is a covert epistemic modal on top of the sentence (Kratzer & Shimoyama, 2002). The epistemic modal is analyzed as a sentential operator whose prejacent is of type \(t \). Thanks to intensional functional application, we can compose the modal with the intension of the sentence. We define the epistemic modal as in (31). The truth condition of sentence (15) is given in (32).

(31) \[\square^i_{\text{epistemic}} p^{G,H} = 1 \text{ iff } \exists K(G \approx_i K & K(i) = \mathcal{W}_{\text{epistemic}} \& \forall w \in \mathcal{W}(\lambda v. p^{G,H}(w) = 1)) \]

(32) \[\square^i_{\text{epistemic}} \text{ Zhangsan bought shenme thing for Lisi}^{G,H} \]
\[= 1 \text{ iff } G \approx_{i,j} H \& H(i) = \mathcal{W} \& H(j) \subseteq \text{thing} \& H \text{ is j-variant} \]
\[\& \forall w \in \mathcal{W}(\exists y \in H(j)((\text{bought}(y) \& \text{Agent}(y, \text{Zhangsan}) \& \text{patient}(y, w))) \]

The underlined ‘H is j-variant’ requires that shenme be assigned at least two different values in the output context for the sentence to be true. Therefore, across all the epistemically accessible worlds to the speaker, at least two different things were bought by Zhangsan as a gift for Lisi. In other words, the speaker cannot be certain what Zhangsan bought Lisi. Otherwise, it should be the same thing that was bought by Zhangsan across all the worlds. The ignorance reading is generated precisely by the plurality requirement shenme imposed on the output context in this case.

4. Advantage over the implicature account

Based on the observation that the wh-indefinite shenme and dependent indefinites behave in a similar way, we give a compositional semantics for it in §3. In this section, we aim to show that our analysis has an advantage over the implicature account proposed by Alonso-Ovalle & Shimoyama (2014) in that their account makes an unattested prediction. By contrast, our analysis is not plagued by this problem.

Alonso-Ovalle & Shimoyama (2014) found that when a wh-indefinite is embedded under a universal quantifier, the ignorance reading is obviated. This obviation effect can be seen in the contrast between the following two conversations.

(33) a. John-wa kinoo dare-ka-ni atteta yo
 John-TOP yesterday who-KA-DAT was.meeting PRT
 John was meeting with someone yesterday.

 b. #honto? itsu dare-ka ni atteta?
 really he who-DAT was.meeting
 Really? Who was he meeting with?

(34) a. Dono kyojuu-mo dare-ka gakusee-to odotteru
 Every professor-MO who-KA student-with is.dancing
 Every professor is dancing with some student.
b. Dare-ga dare-to odotteru no?
 who-NOM who-with is.dancing Q
 Who is dancing with who?

Without the embedded universal quantifier, the use of dare indicates that the speaker is ignorant of the identity of the person John met yesterday. Thus a follow-up question like (33b) is infelicitous. However, with the embedding universal quantifier, the ignorance reading is obviated. Therefore, it is felicitous to ask the speaker to identify the people that the wh-indefinite refers to, as shown in (34b).

In order to explain the ignorance reading in (33) and the obviation effect in (34), Alonso-Ovalle & Shimoyama (2014) proposed an implicature account. Wh-indefinites are treated as a disjunction which activates subdomain alternatives. Sentence (33a) is represented as (35) with the epistemic modal on top. Suppose we have three students in the context, s₁, s₂ and s₃. The negation of the stronger subdomain alternatives gives us the primary implicature (Sauerland, 2004), as in (36). If we try to promote the negation from above the modal to under the modal to derive the secondary implicature, we will end up with (37), which contradicts the original sentence. Therefore, we can only strengthen the meaning of sentence (35) with the primary implicature. What we get, ultimately, is an ignorance reading.

(35) □[John met s₁ or s₂ or s₃]

(36) ¬□[John met s₁], ¬□[John met s₂], ¬□[John met s₃]

(37) □¬[John met s₁], □¬[John met s₂], □¬[John met s₃]

Things are different when an embedding universal quantifier is present in the sentence. As before, let’s assume there are three students in the context, s₁, s₂ and s₃. Sentence (34a) can thus be represented by (38). The primary implicature we get by negating the stronger subdomain alternatives is in (39). Thanks to the universal quantifier every, we can promote the negation to obtain the secondary implicature in (40) without contradicting the original sentence. What we get ultimately is a distributivity reading where at least two students are paired with different professors in the dancing event. The strengthened meaning of (38) with the secondary implicature is compatible with a scenario where the speaker knows which professor is dancing with which student. The ignorance effect, therefore, is obviated.

(38) □[Every professor is dancing with s₁ or s₂ or s₃]

(39) ¬□[Every professor is dancing with s₁], ¬□[Every professor is dancing with s₂], ¬□[Every professor is dancing with s₃]

(40) □¬[Every professor is dancing with s₁], □¬[Every professor is dancing with s₂], □¬[Every professor is dancing with s₃]

4.2. The advantage of our analysis

Based on Alonso-Ovalle & Shimoyama’s (2014) proposal, we need to negate the stronger alternatives in order to derive the distributivity reading, as what we did for sentence (34a). A prediction following this account is that when a wh-indefinite is embedded under a downward-entailing quantifier, the distributivity reading should disappear. Let’s see why. Again, let’s assume the context as before where we have three students. If we replace the universal quantifier in (34a) by a DE quantifier fewer than five, we can represent the new sentence by (41). The subdomain alternatives are given in (42).

(41) □[Fewer than five professors are dancing with s₁ or s₂ or s₃]

(42) □[Fewer than five professors are dancing with s₁], □[Fewer than five professors dancing with s₂], □[Fewer than five professors are dancing with s₃]

With the DE quantifier fewer than five, the subdomain alternatives turn out to be weaker than the original sentence, the negation of which contradicts (41). However, since the implicature account can only derive the distributivity reading by negating the subdomain alternatives, it predicts that the
distributivity reading is unavailable when a \(wh\)-indefinite is embedded under a DE quantifier. This prediction is not borne out in Chinese or Russian.

(43) Budao wu ge ren mai le dian shenme (dongxi) song gei Lisi

Fewer than five CL person buy Asp CL what (thing) give to Lisi

Fewer than five people bought something for Lisi.

(44) Dumaju, o˘cen’ nemnogie nositeli “deržavnogo” jazyka vzjali na sebja trud vyu˘cit’

I-think very few speakers imperial language took on self work to-learn

kakoj-nibud’ iz nacional’nyx jazykov

which-nibud’ from national languages

I think that very few speakers of the ‘imperial’ language (i.e. Russian) undertook the task of learning some national language.

In (43), the distributivity reading is available where the referent of \(shenme\) covaries with the subject. The same fact is found in Russian by Pereltsvaig (2008). He observed that in sentence (44) where the dependent indefinite \(which-nibud’\) is embedded under \(few\), \(which-nibud’\) covaries with \(few\).

Sentences like (43) and (44) pose a challenge to Alonso-Ovalle & Shimoyama (2014) because they have a reading that is predicted to be unavailable by the implicature account. Our analysis, however, does not suffer from this problem. To satisfy the covariation requirement imposed by the \(wh\)-indefinite, we only need a quantifier that introduces a plurality of people, objects, events or worlds. \(Few/fewer\) \(five\), despite a DE quantifier, can create a plurality with which the \(wh\)-indefinite covaries, as can be seen in (45).

(45) \[\text{Fewer than five}_{i} \text{ students bought } shenme_{j} \text{ thing} \] \(G,H\)

\[= 1 \text{ iff } G \approx_{i,j} H \& H(i) \subseteq [\text{student}] \& |H(i)| < 5 \& H(j) \subseteq [\text{thing}] \]

\& H is \(j\)-variant \& \(\forall x \in H(i) (\exists y \in H(j)([\text{bought}](y)(x) = 1))\)

5. Back to the old example

Now let’s return to sentence (1) in which there is no overt licensing quantifier for \(shenme\). A natural question to ask is: why is this sentence ungrammatical instead of giving rise to an ignorance reading? We will give a tentative answer, for many details still need to be worked out, but with the tentative answer, we hope to convince the readers that sentence (1) is ungrammatical not because of the polarity of this sentence, as traditionally argued by many scholars, but because of two independent reasons. First, countable nouns in Mandarin Chinese should be preceded by a classifier unless it is used as a bare noun. Here in the example, the intended reading for the object noun phrase is an indefinite reading. A bare noun is read as an indefinite in Mandarin only when the predicate does not apply to kinds.\(^4\) \(Xihuan ‘like’\) as a stative predicate does apply to kinds and therefore the indefinite reading cannot be generated. A classifier can come to rescue but this sentence does not have one. The second problem is more relevant to our discussion on dependent indefinites. As our analysis on \(shenme\) shows, \(shenme\) needs to covary with a licensing quantifier. When there is no such overt quantifier in the sentence, the covert epistemic modal serves as the last resort. In sentence (1), no overt quantifier creates a covariation environment. In this case, \(shenme\) has to covary with the epistemic modal and an ignorance reading is predicted. However, the subject of this sentence is the first person \(wo \ ‘I’.\) An ignorance reading, if generated, will read as ‘I like somebody but I don’t know who it is’. This is a very bizarre reading since it is against our common knowledge to expect someone to have no idea who s/he likes.

Given the two problems with this example, I conclude that this example fails to demonstrate what it is intended to. Its ungrammaticality has nothing to do with \(shenme\) being unhappy in a simple affirmative sentence. After we add a classifier and change the subject to a third person, the ignorance reading emerges, as is predicted by our analysis.

\(^4\)See Chierchia (1998) for more details on the rule of DKP.
Zhangsan xihuan ge shenme ren
Zhangsan like CL what person
Zhangsan likes somebody, (but I don’t know who it is).

The second reason in our tentative answer is a pragmatic point. This means that once we give an appropriate context, a first person subject should be compatible with an ignorance reading. This is exactly what we found, as is shown in (47). In a context where John woke up finding a small lump on his arm, it is felicitous for him to utter (47).

(47) Wo bei yi ge shenme chong yao-le
I PASS one CL what insect bite-ASP
I was bitten by an insect, (I don’t know which/what kind of insect it is).

Notice that with an atelic predicate, an ignorance reading with a first person subject is very hard to access, as (1) shows. However, with a telic predicate, an ignorance reading is accessible even with a first person subject, as we see in (47). Why this is so is beyond this paper.

6. Conclusion

In this paper, we use some new data on a representative wh-indefinite shenme in Mandarin to argue against the traditional analysis that the non-interrogative wh-phrases in Mandarin are existential polarity items. Contrary to the previous claim, we find that shenme is felicitous in veridical sentences as long as its referent can covary with a licensor. Universal quantifiers, distributively interpreted subjects and pluractional adverbs can all license shenme. When there is no overt licensor in the sentence, shenme covaries with the unpronounced epistemic modal and gives rise to an ignorance reading. This behavior echoes the so-called dependent indefinites that are found in many languages. We adopt the core ingredients from DPIL to analyze shenme and show that our analysis is advantageous over Alonso-Ovalle & Shimoyama’s (2014) implicature approach.

One last problem is how shenme interacts with negation. If shenme imposes a discourse-plural requirement, we predict that sentence (2) is true in a scenario where Zhangsan didn’t eat at least two different things. This reading, however, is too weak compared to the intuitive reading we obtain for this sentence — Zhangsan didn’t eat anything. We leave this problem for future research.

References

I thank Veneeta Dayal for pushing me to clarify this point.

5I thank Veneeta Dayal for pushing me to clarify this point.
Proceedings of the 35th West Coast Conference on Formal Linguistics

edited by Wm. G. Bennett, Lindsay Hracs, and Dennis Ryan Storoshenko

Cascadilla Proceedings Project Somerville, MA 2018

Copyright information
Proceedings of the 35th West Coast Conference on Formal Linguistics
© 2018 Cascadilla Proceedings Project, Somerville, MA. All rights reserved
ISBN 978-1-57473-472-0 library binding
A copyright notice for each paper is located at the bottom of the first page of the paper. Reprints for course packs can be authorized by Cascadilla Proceedings Project.

Ordering information
Orders for the library binding edition are handled by Cascadilla Press.
To place an order, go to www.lingref.com or contact:
Cascadilla Press, P.O. Box 440355, Somerville, MA 02144, USA
phone: 1-617-776-2370, fax: 1-617-776-2271, sales@cascadilla.com

Web access and citation information
This entire proceedings can also be viewed on the web at www.lingref.com. Each paper has a unique document # which can be added to citations to facilitate access. The document # should not replace the full citation.

This paper can be cited as: