1. Introduction

Roberts – Holmberg (2010: 12) give a typology of Null Subject Languages (NSLs) on the basis of what kinds of null subject they allow:

(1) Type 1 Expletive null subject languages (German, Dutch)
 Type 2 Partial null subject languages (Finnish, Russian)
 Type 3 Consistent null subject languages (Italian, Greek)
 Type 4 Radical null subject languages (Chinese, Indonesian)

In order to understand how Hungarian differs from Type 1–Type 4 languages, we must look at Type 2 and Type 3 languages first.

Holmberg (2005, 2010) establishes the following correlation between 3SG generic vs. 3SG referential null subjects in Type 2 Partial NSLs and Type 3 Consistent NSLs:

(2) Type 2 Partial NSLs:
 3SG generic subjects must always be null, (4);
 3SG referential subjects must not be null, (5);
(3) Type 3 Consistent NSLs:
 3SG referential subjects can be freely dropped, (6);
 3SG generic subjects must not be null, (7)-(8).

Type 2 NSLs: 3SG generic null subject
(4) Tässä pro$_{GN/i}$ istuu mukavasti.
 ‘One can sit comfortably here.’ (Finnish, Holmberg 2010: 204-211)

Type 2 NSLs: 3SG referential lexical subject
(5) Hän/*pro$_{GN}$ istuu mukavasti tässä.
 ‘He sits comfortably here.’ (Finnish, Holmberg 2010: 204-211)

Type 3 NSLs: 3SG referential null subject
(6) pro Ha telefonato.
 ‘He has telephoned.’ (Italian, Rizzi 1982)

* I wish to thank the following people for their helpful comments and suggestions: Huba Bartos, Anna Bondaruk, Veronika Hagedus, Hans-Martin Gaertner, Malgorzata Krzek, Edith Moravcsik, Halldor Armann Sigurdsson.

1 Abbreviations:
ACC = accusative case; COM = comitative case (together with); COP = copula; DAT = dative case; DEF = definite; FORM = formalis case (in a given form/way); GN = generic inclusive operator/feature; INESS = inessive case (in); INF = infinitive; NOM = nominative case; POT = potentialis mood; PASS = passive voice; PAST = past tense; PFX = prefix; POSS = possessive suffix; PRES = present tense; PTCP = participle; RFL = reflexive; SBJ = subjunctive mood; SBL = sublative case (onto); TOP = topic.

Type 3 NSLs: 3SG generic lexical subject

(7) Se
 si è morti, non ci si muove piu.
 if one COP dead not RFL one move any more
 ‘If one is dead, one does not move any more.’
 (Italian, D’Alessandro – Alexiadou 2003: 35)

(8) *Se
 proGEN è morti, non ci proGEN muove piu.
 if one COP dead not RFL one move any more
 ‘If one is dead, one does not move any more.’
 (Italian, D’Alessandro – Alexiadou 2003: 35)

3SG generic inclusive lexical vs. null subjects in Hungarian represent the free genericity-inducing vs. the bound variable occurrences of one identified by Moltmann (2006, 2010, 2012). The 3SG generic inclusive lexical subject az emberGEN ‘the man’ instantiates genericity-inducing one, which does not require an antecedent and always receives widest scope interpretation; the 3SG generic inclusive null subject (proGEN) represents the bound variable occurrence of one, which requires a 3SG generic inclusive, long-distance, lexical antecedent. Both kinds of 3SG generic inclusive subject are in the scope of GN.

2. Null subjects in Hungarian

Hungarian is a Null Subject Language in the sense of Jaeggli – Safir (1989: 29), which, however, does not fit in the typological system established by Roberts – Holmberg (2010: 12). It allows (i) expletive null subjects (ii) referential null subjects and (iii) generic exclusive null subjects, as Type 2 Partial NSLs do:

EXPLETIVE NULL SUBJECT

(9) Már hajnal-od-ott proEXPL, amikor el-alud-tak
 already dawn-RFL-PAST3SG EXPL when PFX-sleep-PAST3PL
 a gyerekek.
 the children
 ‘It was already beginning to dawn when the children fell asleep.’

REFERENTIAL NULL SUBJECT

(10) Vera le-fél-t, [hogy proij le-kés-i a film-et].
 Vera fear-PAST3SG that s/he PFX-miss-PRES3SG the movie-ACC
 ‘Vera feared that sheij (herself /someone else) would miss the movie.’

GENERIC EXCLUSIVE NULL SUBJECT

(11) Itt nem beszél-nek proarb magyar-ul.
 here not speak-PRES3PL (people) Hungarian-FORM
 ‘People do not speak Hungarian here.’

In addition, it also allows any referential argument to be null\(^2\), just like Type 4 Radical NSLs:

\(^2\) Hungarian verbs show agreement with definite objects, see Bartos (1997). A referential object can be null only if it is definite (see Farkas 1998).
REFERENTIAL NULL OBJECT

(12) Lát-tam pro₁, hogy ver-ik a gyerekek pro₃.
see-PAST1SG (I) that beat-PRES3PL[+DEF] the children (him/her)

‘I saw that the children were beating him/her.’

3SG generic inclusive subjects are expressed by the generic inclusive DP az ember ‘the man’ in Hungarian:

GENERIC INCLUSIVE LEXICAL SUBJECT

(13) Az ember mindig fél-0, hogy le-zuhan-0
the man always fear-PRES3SG that PFX-crash-PRES3SG

a repülőgép.
the airplane

‘One always fears that the airplane will crash.’

Due to the fact that 3SG referential subjects can be freely dropped, 3SG null subjects do not normally receive the generic inclusive interpretation in this language:

GENERIC INCLUSIVE NULL SUBJECT

(14) *Mindig fél-0 proGEN, hogy le-zuhan-0
always fear-PRES3SG (one) that PFX-crash-PRES3SG

a repülőgép.
the airplane

‘One always fears that the airplane will crash.’

One could easily infer from these facts that Hungarian is a Type 3 Consistent NSL, where 3SG referential subjects can always be null and 3SG generic subjects must be lexical, see (8a,b). This is, however, not the case. Generic inclusive si ‘one’ in Italian cannot serve as an antecedent for pro, (15), (see Chierchia 1995), however the 3SG generic inclusive lexical subject az ember ‘one’ in Hungarian can happily do so, irrespective of whether the lexical antecedent itself functions as a canonical nominative subject, as in (16), or a dative experiencer subject, shown in (17) (see Dalmi 2000, 2005):

(15) *Si i a detto che pro₁ vinceranno.
si PERF said that (they) win.PTCP.3PL
‘People say that (they) will win.’ (Italian, Chierchia 1995: 109)

(16) Az ember₉₈ nem készül-0 arra, hogy meg-hal-0 pro₈₉.
the man not prepare-PRES3SG it.SPR that PFX-die-PRES3SG (the man)

‘One is not prepared (for it) that one would die.’

(17) Az ember-nek₉₈ kínos 0 ha izzad-0 pro₈₉.
the man-DAT embarrassing COP.PRES3SG if sweat-PRES3SG (the man)

‘It is embarrassing (for one) if one sweats.’

2.1. Generic inclusive lexical vs. null subjects in Hungarian

The fact that 3SG generic inclusive null subjects require a 3SG generic inclusive lexical antecedent in the left-adjacent clause excludes Hungarian from Type 3 Consistent NSLs, where generic inclusive

3 On the syntactic and semantic differences between 3SG generic inclusive vs. 3PL generic exclusive subjects in Hungarian see Bródy (2011) and Tóth (2010).
null subjects are absent altogether. In Type 2 Partial NSLs, on the other hand, generic inclusive null subjects can appear without a lexical antecedent in their own right:\footnote{Finnish uses a special impersonal passive construction for the 3PL generic exclusive reading:}

\begin{center}
\textbf{GENERIC INCLUSIVE NULL SUBJECT}
\end{center}

\begin{itemize}
\item[(21)] Ranka-ssa $\text{pro}_{GN}^{/*i}$ syö-0 hyvin.
 \begin{tabular}{lll}
 France-INESS & (one)/"he & eat-PRES3SG well \\
 ‘One/"He eats well in France.’ (Finnish, Holmberg 2010: 203)
 \end{tabular}
\end{itemize}

As 3SG referential subjects can never be null in Type 2 Partial NSLs, alternation with 3SG generic null subjects is impossible.

The Hungarian 3SG generic inclusive lexical subject az ember ‘the man’ has the following properties:

\begin{itemize}
\item[(22)] 3SG generic inclusive az ember ‘the man’
\item[(i)] it serves as an antecedent for reflexives (see Chierchia 1995 on Italian \textit{si});
\item[(ii)] it serves as a long-distance antecedent for 3SG generic inclusive pro_{GN} but not for 3SG unique reference pro;
\item[(iii)] it serves as an antecedent for the null subject of depictive adjunct predicates (see Kratzer 2000 on German man);
\item[(iv)] it controls the PRO_{GN} subject of infinitival clauses\footnote{On the syntactic and semantic differences between unique reference PRO and generic PRO see O’Neil (1997, Chapter 5).} (see Giannakidou – Merchant 1997 on Greek PRO_{GN}).
\end{itemize}

These properties indicate that 3SG generic inclusive null subjects in Hungarian share the [+phi] person/number features with their 3SG generic inclusive lexical antecedent, in addition to the [+GN] feature:

\begin{itemize}
\item[(23)] Manapság az ember$_{GN}$ lát-hat-ja $\text{magá-t}_{GN}^{/*i}$
 \begin{tabular}{ll}
 nowadays & the man.3SG.NOM see-POT-3SG self-3SG.ACC \\
 az internet-en. & the internet-SBL \\
 ‘Nowadays one can see oneself/*himself on the internet.’
 \end{tabular}
\item[(24)] Az ember$_{GN}$ nem vizsgál-0 beteg-etj, ha
 \begin{tabular}{ll}
 the man.3SG.NOM not & examine-PRES3SG patient-ACC when \\
 részeg 0 $\text{pro}_{GN}^{/*j}$ /ö_{GN}.
 \end{tabular}
 \begin{tabular}{llll}
 drunk COP.PRES3SG (the man)/he$_{i}$/he$_{GN}$ & ‘One does not examine patients when one /*he$_{j}^{GN}$ is drunk.’
 \end{tabular}
\item[(25)] Ha az ember isz-ik, pro_{GN} /ö_{GN} nem vezet-0.
 \begin{tabular}{llll}
 if the man drink-PRES3SG (the man) /he & not & drive-PRES3SG & ‘If one drinks, one/*he does not drive.’
 \end{tabular}
\end{itemize}
Azok-ban az idők-ben az ember nem akart

[meg-operálni PRO egy halálos beteg-et]

PFX-operate-INF a lethally_ill patient-ACC

‘In those times, one would not want [PRoGEN to operate on lethally ill patients].’

The 3SG generic inclusive null subject, proGEN, always requires a 3SG generic inclusive antecedent in the adjacent clause.

2.2. The semantic interpretation of generic inclusive lexical and null subjects

Generic inclusive one in English induces first person-oriented genericity and is always interpreted with widest scope (Moltmann 2006, 2012). This, however, does not turn generic inclusive one into a quantified DP. GN cannot be a universal quantifier as it allows for exceptions and has modal force (Moltmann 2006, 2012). Furthermore, in contrast to existentially quantified DPs, generic inclusive one never takes narrow scope with respect to true quantifiers (examples from Moltmann 2006: 260-262):

(27) Most books that one buys are not about oneself. ONE > MOST
(28) Most books that someone buys are not about himself. MOST > Ǝ

The sentence in (27) cannot be interpreted as ‘the majority of the books someone or another buys…’. It can only have the interpretation ‘for any person, the majority of the books that person buys are not about him’. In this respect, first person-oriented genericity-inducing one resembles ‘free choice’ any (Kadmon – Landman 1993).

The fact that GN always has widest scope indicates that it is a sentential operator, which takes scope over the whole proposition. This motivates accommodating GN in SpeechActPhrase (SAPP) within the C-domain (see D’Alessandro – Alexiadou (2003), Sigurðsson (2004) and Bianchi (2006)).

Generic inclusive one cannot be existentially bound because it appears in syntactic environments where existentially quantified DPs do not normally appear. For instance, it may serve as an antecedent for another occurrence of generic inclusive one in donkey-sentences and in Weak Cross-Over (WCO) contexts, where existentially quantified DPs are banned (Moltmann 2006: 261).

Existentially quantified DPs do not qualify in those contexts in Hungarian, either, though generic inclusive lexical subjects are perfectly grammatical. Let us now consider WCO-contexts.

In Hungarian, the possessor within the possessive DP can be null. The 3SG generic inclusive dative beneficiary argument in (29) takes scope over the whole proposition including the 3SG generic null possessor, therefore no WCO-effect is observed:

(29) [CP hogy [ForceP vajon INT [SAPP GN [TOPP….[FOCP meddig FOC [FinP él-0 FIN [VP az ember]]]]].

(Who knows) ‘….how long one lives.’

6 Krifka and al. (1995) take GN to be a universal quantifier. In discourse-configurational Hungarian (see É.Kiss 1994), the widest scope interpretation of a quantifier can be obtained by overtly moving the relevant quantified XP to the leftmost position of the C-domain (see Bródy – Szabolcsi 2006). By this definition, generic inclusive lexical items could only appear sentence-initially, contrary to the evidence (see (i) in footnote 7).

7 In the cartographic model (Rizzi 1997, 2004, 2006) all clauses show a tripartite division. The split C-domain is responsible for quantificational and illocutionary functions, the T-domain hosts functional projections related to verbal inflection, while the V-domain is the lexical layer hosting the verb and its arguments: [[FocP*.....[TopP*....[FocP*.....[FocP*.....[FocP*.....[TopP*....[FocP*meddig FOC [FinP él-0 FIN [VP az ember]]]]]]]]]. Recently several proposals have been made to split the C-domain further (Frascarelli – Hinterhölzl 2007, Sigurðsson 2004, Cardinaletti 2004 and Dalmi 2013): (i) [CP hogy [ForceP vajon INT [SAPP GN [TOPP….[FocP meddig FOC [FinP él-0 FIN [VP az ember]]]]]].
The existentially quantified beneficiary valaki 'someone’ in (30), on the other hand, cannot take scope over the 3SG referential null possessor (pro), which it does not c-command. This leads to weak ungrammaticality:

WCO-EFFECT
(30) ??Valaki-nek, mindig ad-0 ajándék-ot az pro,
someone-DAT always give-PRES3SG present-ACC the s/he-NOM

any-ja [DP ti].
mother-POSS3SG

'His i mother always gives someone i a present.’

Moltmann (2010: 445) takes GN to be a complex operator consisting of a universal quantifier that ranges over possible worlds and is restricted by an accessibility relation R from the actual world to “normal” worlds, plus a universal quantifier ranging over individuals and restricted by a normality condition N and a contextual relevance condition C. This suggests that generic inclusive one is a context-dependent genericity-inducing item whose interpretation involves the interlocutors. This is a property linking generic inclusive one and PROarb (Moltmann 2006).

2.3. PROGN ≠ PROarb

Moltmann (2010) claims that generic inclusive one has a phonologically empty counterpart, PROarb, in non-finite clauses. Indeed, finite clauses with generic inclusive one can often be replaced by nonfinite clauses with PROarb:

(32) John knows [how one should behave in Buckingham Palace].
(33) John knows [how PROarb to behave in Buckingham Palace].

Yet, there are other environments where such interchangeability is impossible:

(34) John reminded us [that one shouldn’t lose one’s belongings on the train].
(35) John reminded us *[PROarb not to lose *PROarb’s belongings on the train].

PROarb in (33) does not require an antecedent. The bound variable occurrence of controlled PRO, PROGN, always requires a lexical or null 3SG generic inclusive antecedent in the higher clause, which clearly distinguishes it from PROarb:

(36) It is fun (for oneGN) [PROGN to walk in the park for hours].

In Hungarian, where genericity-inducing one vs. bound variable one are realized as two lexically distinct forms, it is not surprising that the PRO subject of infinitival clauses also displays such duality:
The 3SG generic inclusive lexical or null subject in the matrix clause serves as an antecedent for PROGN. Therefore this occurrence of PRO is cannot be an instance of PROarb (Chomsky 1981).

2.4. 3SG generic inclusive subjects with psych-impersonal predicates in Hungarian

As was mentioned in section 1, Hungarian is a Null Subject Language in which any argument (including the dative experiencer argument of psych-predicates) can become null. In such languages, null subjects can always remain in their VP-internal position and can have their syntactic features licensed VP-internally (see Alexiadou – Anagnostopoulou 1998 and Holmberg – Nikanne 2002). The verbal head carries all the syntactic and semantic features to be licensed in the course of the derivation. XPs preceding the verb occupy the relevant structural position of the C-domain, reserved for quantificational and illocutionary functions:

3SG generic inclusive lexical subjects syntactically resemble 3SG referential lexical subjects in that they move to the relevant position of the C-domain overtly, to fulfil their discourse-semantic role. GN is a complex generic operator (Moltmann 2006, 2010, 2012). It ensures the widest scope interpretation of generic inclusive subjects:

9 Dalmi (2005) takes Hungarian to be a VSO type of language in the sense of Alexiadou – Anagnostopoulou (1998). Surface word order in this language is discourse-semantically determined (see É. Kiss 1994). The canonical [Spec,TP] subject position need not be filled at all, providing that there is a potential candidate, other than the subject, to satisfy EPP on the left periphery of the clause (see Holmberg – Nikanne 2002 for satisfying EPP in Finnish, Frascarelli – Hinterhölzl 2007 for German and Italian, Sigurðsson 2010 for Icelandic).

10 The “structural dative” account of dative experiencer subjects (Tóth 1999) is highly questionable as it presupposes a rigid SVO clause structure in Hungarian finite and non-finite clauses, where subjects receive “structural case” in the canonical subject position (see Dalmi 2000, 2005 for arguments against this view).
It is unpleasant (for one) if one borrows money.

It is unpleasant (for one) [PROGN to borrow money].

3. Summary

In this short paper I outlined the syntactic properties of 3SG generic inclusive lexical and null subjects in Hungarian. While 3SG generic inclusive lexical subjects are genericity-inducing, context-dependent referential expressions, always free in their minimal binding domain; their null counterparts are variables, which must always be bound by a 3SG generic inclusive antecedent in the higher clause. 3SG generic inclusive lexical and null subjects represent the two occurrences of generic inclusive one in English, identified by Moltmann (2006, 2010, 2012).

References

Proceedings of the 31st West Coast Conference on Formal Linguistics
edited by Robert E. Santana-LaBarge

Cascadilla Proceedings Project Somerville, MA 2014

Copyright information
Proceedings of the 31st West Coast Conference on Formal Linguistics
© 2014 Cascadilla Proceedings Project, Somerville, MA. All rights reserved
ISBN 978-1-57473-462-1 library binding
A copyright notice for each paper is located at the bottom of the first page of the paper. Reprints for course packs can be authorized by Cascadilla Proceedings Project.

Ordering information
Orders for the library binding edition are handled by Cascadilla Press.
To place an order, go to www.lingref.com or contact:
Cascadilla Press, P.O. Box 440355, Somerville, MA 02144, USA
phone: 1-617-776-2370, fax: 1-617-776-2271, sales@cascadilla.com

Web access and citation information
This entire proceedings can also be viewed on the web at www.lingref.com. Each paper has a unique document # which can be added to citations to facilitate access. The document # should not replace the full citation.
This paper can be cited as: