The Combined Effects of Manipulating Tasks in Two Dimensions on L2 Speech Performance

Ayşen Tuzcu and Şebnem Yalçın

1. Introduction

Since the introduction of Task-Based Language Teaching (TBLT) into Second Language Acquisition (SLA) literature, there is a growing interest in investigating the effects of tasks on learning and teaching a second/foreign language. This interest can be attributed to the promising nature of the tasks used in classrooms. Using tasks in classrooms has various theoretical underpinnings. Firstly, tasks provide opportunities for learners to produce language. According to the Output Hypothesis (Swain, 1995; Swain & Lapkin, 1995), producing language allows for meaningful practice for second language (L2) learners, as it helps learners notice the problems in their performance and modify their output. Therefore, tasks direct learners’ attention to linguistic elements as well as to the meaning. In addition, tasks can provide opportunities for negotiation of meaning, which facilitates L2 development and L2 performance (the Interaction Hypothesis, Long, 1996).

Tasks in TBLT are created according to learners’ needs. They are used as units of analysis in the design and implementation of a syllabus, and they have a potential to lead learners to use language communicatively while directing their attention to the emerging linguistic problems during communication. The aim of TBLT is to enable learners to achieve target tasks (real-world tasks) that have been found to be necessary for them in the needs analysis. Therefore, in task-based syllabi, target tasks are simplified into pedagogic tasks and these pedagogic tasks are sequenced and graded according to their complexity levels (Long, 2015).

A well-known taxonomy for classifying pedagogic tasks is proposed by Robinson (2001, 2005, 2007a, 2011). In his Triadic Componential Framework, task complexity is defined in relation to the attention and memory demands of tasks. It includes two different dimensions: resource-directing dimension, which refers to the cognitive and conceptual demands of tasks and resource-dispersing dimension, which deals with the performative/procedural demands of tasks. When the complexity of a task is increased along resource-directing features such as ± here-and-now, ± few elements, ± spatial reasoning, ± causal reasoning, ± intentional reasoning, and ± perspective-taking, learners can pay attention to the structures and forms in their language. Therefore, they can attend to the linguistic aspects such as accuracy and complexity of their performances and complete the task properly. On the other hand, in resource-dispersing dimension, tasks are manipulated with respect to non-linguistic features such as ± planning time, ± prior knowledge, ± single task, ± task structure, ± few steps, and ± independency of steps. Hence, these manipulations prevent learners from focusing on the linguistic elements and they cannot pay attention to accuracy and complexity of their performances.

There are mainly two hypotheses predicting how learners’ performances (i.e. fluency, accuracy, complexity) are influenced by increasing the complexity of a task. In the Limited Attentional Capacity Hypothesis, Skehan (1998) and Skehan and Foster (2001) claim that attentional resources in humans are limited, so it is not possible for learners to pay simultaneous attention to the different aspects of the language. Following VanPatten (1990), Skehan and Foster argue that learners prioritize meaning over form when completing a task. Additionally, more complex tasks need more attention to meaning which causes learners not to have enough attentional resources to focus on form. However, even with a particular focus on form, it is not possible to pay concurrent attention to both accuracy and complexity. There are trade-off effects between these two aspects. In other words, when one of these competing aspects gets attention, the other will remain unattended. Which aspect gets more attention depends on the individual. One learner may not pay attention to the use of complex structures for the sake of being accurate (safety first approach) while another learner may choose to use more complex sentences despite being inaccurate (accuracy last approach) (Skehan & Foster, 2001).
Robinson (2001, 2011), on the other hand, argues that humans have multiple attentional resources, so it is possible for learners to pay simultaneous attention to more than one aspect of their L2 performances. In the Cognition Hypothesis, he asserts that increasing the complexity of resource-directing features results in more complex and more accurate but less fluent performances because of the higher cognitive and conceptual demands. Unlike resource-directing dimension, increasing the complexity in resource-dispersing characteristics such as not providing planning time leads to decreased complexity, accuracy, and fluency levels due to the higher performative demands of these tasks. Robinson (2011) also states that changing the cognitive complexity of tasks along both resource-directing and resource-dispersing dimensions leads to some combined effects which are different than the impacts of manipulating the tasks along only one of these dimensions.

These two contradictory predictions have widely been investigated across various task features such as the number of elements (Kuiken & Vedder, 2007, 2008; Revesz, 2011; Sasayama & Izumi, 2012), time perspective (Gilabert, 2007; Iwashita, McNamara, & Elder, 2001; Robinson, 1995), and reasoning demands (Robinson, 2007b). However, most of these studies examining the effects of cognitively complex tasks have only partially confirmed the Cognition Hypothesis. In a meta-analysis, Jackson and Suethanapornkul (2013) reported small positive effects for accuracy and small negative effects for fluency in cognitively complex tasks. In addition, contrary to the predictions of the Cognition Hypothesis, these researchers did not report any significant effects for syntactic complexity. In the light of these inconsistent results, Skehan (2016) states that the impacts of changing task characteristics along resource-directing features may not be as great as expected. Instead, he argues for greater and more consistent results when the conditions of the tasks such as the availability of pre-task planning time (Ellis, 1987; Foster & Skehan, 1996; Gilabert, 2007; Iwashita et al., 2001; Sasayama & Izumi, 2012; Yuan & Ellis, 2003) or task repetition (Ahmadian & Tavakoli, 2010) rather than their characteristics are manipulated.

In the present study, both task characteristics (resource-directing features) and the conditions under which tasks are completed (resource-dispersing features) were manipulated. The cognitive complexity of the tasks were changed in terms of their time perspective (Here-and-Now vs. There-and-Then). In addition, following Skehan (2016), task condition also manipulated. Two different groups of participants completed the tasks under two different online planning conditions (i.e. careful online planning and pressured online planning). Although there are several studies which investigated the impacts of manipulating tasks along these features, all these studies changed the tasks only in one dimension. To our knowledge, no study has manipulated the tasks along both time perspective and online planning conditions. Moreover, most of the previous studies employed lower intermediate (Gilabert, 2007) or intermediate level (Ahmadian & Tavakoli, 2010; Ahmadian, Tavakoli, & Dastjerdi, 2015; Robinson, 1995; Ellis & Yuan, 2005; Yuan & Ellis, 2003) participants. However, the same conditions may have different effects on L2 learners with high proficiency.

2. Literature Review

2.1. Time Perspective Studies

The Here-and-Now condition changes the time reference of tasks. Here-and-Now tasks are stated to be simpler and cognitively less demanding than There-and-Then tasks since they require the use of present, context-supported references. Therefore, on Here-and-Now tasks, performers only need to use appropriate linguistic resources from a context. There-and-Then tasks, on the other hand, refer to past events. This displacement in time and place requires performers to be more accurate and syntactically more complex to be understood correctly (Robinson, 1995).

Most researchers investigating the impacts of time perspective have employed narrative tasks (Gilabert, 2007; Iwashita, McNamara, & Elder, 2001; Robinson, 1995; Wang & Skehan, 2014). In these tasks participants were asked to tell a story based on either a set of pictures or a video. The complexity of tasks were manipulated by the presence or absence of pictures or videos while retelling the stories.

Robinson (1995) examined the effects of Here-and-Now and There-and-Then conditions in narrative tasks. He employed three similar picture strips with a character named Mr. Brown. Twelve intermediate level English learners participated in the study and narrated these pictures either in Here-and-Now or in There-and-Then conditions. On the Here-and-Now task, they were allowed to look at the pictures while telling their stories, whereas for the There-and-Then task, the pictures were taken away after 50 seconds. For Here-and-Now, participants were given a prompt written in present tense, while this prompt was in
past tense for There-and-Then. At the end of the study, increased task complexity resulted in lower fluency but greater accuracy scores. However, there was no difference for syntactic complexity between the simple and complex tasks. Therefore, this study confirmed the Cognition Hypothesis only partially.

Iwashita et al. (2001) manipulated the complexity of tasks with respect to four different features. These were ± perspective, ± immediacy (Here-and-Now or in There-and-Then), ± adequacy (complete vs. missing sets of pictures), and ± pre-task planning (either 0.5 or 3.5 minutes). All participants performed all eight tasks. At the end of the study, only accuracy in the immediacy dimension increased significantly in the more complex task. There were no differences for any aspects in any of the other three dimensions.

In another study, Gilabert (2007) investigated the combined as well as separate effects of task manipulations and employed four tasks with different complexity levels changed with regard to ± Here-and-Now and ± pre-task planning features. He operationalized the Here-and-Now and There-and-Then conditions following Robinson (1995). 48 lower-intermediate level English learners participated in the study and they completed four tasks. At the end of the study, the Cognition Hypothesis was only partially confirmed. The Here-and-Now tasks resulted in more fluent performance regardless of the planning time. However, accuracy levels of the learners were higher on the There-and-Then tasks. Unlike the predictions of the Cognition Hypothesis, lexical complexity levels of the learners were lower in There-and-Then tasks. Finally, syntactic complexity scores did not differ significantly across the tasks.

Wang and Skehan (2014) also examined the effects of task conditions on participants’ oral performances. They changed the complexity of the tasks with respect to three task characteristics. These were task structure, vocabulary difficulty, and time perspective. Differently from the previous studies, they employed four silent videos rather than picture sequences for their oral narrative tasks. On the Here-and-Now tasks participants told the story in present tense while watching the video. On the There-and-Then tasks, on the other hand, they told it in past tense after watching the video. 72 English learners participated in the study. At the end of the study, the participants completing the tasks under There-and-Then conditions had higher structural complexity levels and fewer pauses at clause boundaries. Besides, the structured There-and-Then tasks led to higher accuracy and complexity levels than the unstructured tasks.

In short, all of the studies except for Wang & Skehan (2014) reported increased accuracy in There-and-Then tasks with at least one accuracy measure. Furthermore, the There-and-Then condition resulted in lower fluency scores except for the study conducted by Iwashita et al. (2001). This study did not report any significant differences in fluency levels between the Here-and-Now and There-and-Then tasks. For the syntactic complexity, on the other hand, only Wang and Skehan (2014) reported greater scores for the There-and-Then condition. However, their operationalization of the Here-and-Now and There-and-Then tasks was different from the previous studies. Hence, the results should be interpreted cautiously.

2.2. Online Planning Studies

Online planning is concerned with the time given to participants to complete a task. Ellis and Yuan (2005) divide online planning into careful online planning and pressured online planning. In the careful online planning, learners have unlimited time for completing the task. Therefore, in the careful online planning condition, learners can spend more time for formulating their languages so that they can produce more accurate and syntactically more complex sentences. In addition, they can also monitor their speech and correct the incorrect utterances. While the careful online planning increases the accuracy and complexity of learners’ performances, it results in lower fluency. On the contrary, in the pressured online planning condition, learners have a time limit to perform a task. Thus, they are faster in producing language in this condition. However, under time pressure, learners may not have enough time to monitor their speech and this leads to less accurate and syntactically less complex performance.

Yuan and Ellis (2003) investigated the impacts of the pre-task planning and careful online planning in L2 learners’ fluency, accuracy, syntactic complexity, and lexical complexity levels. 42 English learners were assigned to three groups: no planning (NP), pre-task planning (PTP), and careful online planning (COP). They told a story based on a set of pictures. For the PTP, the learners had a 10-minute pre-task planning time before telling their stories. While narrating the story, they were given 5 minutes and they had to produce four sentences for each picture. The participants in the COP group started telling their stories after seeing the pictures for 50 seconds. Differently from the PTP group, they had ample time to
complete their stories. In the NP condition, the participants started their stories after 50 seconds and they were given only 5 minutes to tell their stories. The researchers reported more accurate and syntactically complex performances for the participants in the COP group compared to the NP group. However, there were no significant differences in terms of fluency and lexical and syntactic variety. Besides, when compared to the PTP group, the COP group had significantly lower fluency scores. In 2005, the same researchers investigated the effects of the careful and pressured online planning in both written and spoken tasks. Participants in the pressured online planning group were given 5 minutes for the oral task and 17 minutes for the written task. At the end of the study, the researchers reported greater syntactic complexity and accuracy scores for the participants in the careful online planning groups regardless of the mode of the task. However, they did not find any significant differences between the careful and pressured online planning groups in terms of fluency and lexical variety.

Ahmadian and Tavakoli (2010) investigated the effects of manipulating tasks with regard to the careful/pressured online planning and task repetition simultaneously. There were four groups in their study. These were careful online planning without task repetition; careful online planning with task repetition; pressured online planning without task repetition; and pressured online planning with task repetition. The researchers operationalized the careful/pressured online planning following Yuan and Ellis (2003). Each group had 15 English learners and they told a story based on a silent video. The learners in the careful online planning conditions had greater syntactic complexity and accuracy scores while they were less fluent. However, lower fluency levels were compensated when the tasks were repeated. The learners in careful online planning with task repetition group were more accurate, syntactically complex, and fluent than the ones in the other groups.

Ahmadian, Tavakoli, and Dastjerdi (2015) also examined the effects of the careful/pressured online planning. These researchers changed the task structure in addition to the online planning conditions. 60 intermediate level English learners participated in the study and they were divided into four groups: structured task and careful online planning group; structured task and pressured online planning group; unstructured task and careful online planning group; and unstructured task and pressured online planning group. Similar to the previous study, the careful online planning led to increased accuracy and syntactic complexity levels but decreased fluency levels. Moreover, on the structured tasks the participants had higher fluency levels. Therefore, the structured tasks improved the decrease in the fluency scores which was caused by the pressured online planning condition.

In short, as in line with Skehan’s (2016) suggestions, all studies manipulating the online planning variable reported increased accuracy and syntactic complexity scores under the careful online planning condition (Ahmadian & Tavakoli, 2010; Ahmadian, Tavakoli, & Dastjerdi, 2015; Ellis, 1987; Ellis & Yuan, 2005; Yuan & Ellis, 2003). However, these studies presented mixed results for how careful online planning affect fluency. Two studies (Ahmadian & Tavakoli, 2010; Ahmadian, Tavakoli, & Dastjerdi) reported a decrease in fluency levels, whereas others (Ellis & Yuan, 2005; Yuan & Ellis, 2003) reported insignificant differences. Finally, none of the studies reported a difference in terms of lexical complexity.

3. Research Questions and Hypotheses

The current study attempts to answer three research questions:

1. How does manipulating the task complexity with respect to the time perspective (± Here-and-Now) affect the syntactic complexity of L2 speech production?
 Hypothesis 1: Following the Cognition Hypothesis, we expected to find an increase in the syntactic complexity levels of participants for the There-and-Then task.

2. How does the availability of online planning affect the syntactic complexity of L2 speech production?
 Hypothesis 2: In the light of the previous studies, regardless of the time perspective, greater syntactic complexity scores were expected to be achieved by the careful online planning group.

3. Are there any combined effects of the time perspective and the online planning on the syntactic complexity of L2 speech production?
Hypothesis 3: Robinson (2005) states that learners perform better in a task with high cognitive but less performative demands. Taking this argument into consideration, the highest syntactic complexity scores were expected to be achieved by the participants in careful online planning group on the There-and-Then task. Moreover, Gilabert (2007) predicts that simultaneous increases in the cognitive and performative demands have negative effects on learners’ productions. Therefore, we expected to find the lowest syntactic complexity scores on the There-and-Then task for the participants in the pressured online planning group.

4. Participants

The participants in the study were 24 (6 male, 18 female) first-year undergraduate students majoring in the English Language Teaching Department at an English medium public university in Turkey. Their ages were between 18 and 20. These learners took a TOEFL-ITP test at the beginning of the first year, and they had a ranged of 543 to 623. According to the Common European Framework of Reference for Languages (CEFR), their proficiency levels ranged from B2 to C1.

5. Research Design and Procedure

This study has a 2x2 mixed design with the Here-and-Now/There-and-Then conditions as within-participant variables and the careful online planning/pressured online planning conditions as between-participant variables. The task order was counterbalanced in each condition to prevent the task order effects. Table 1 shows the design of the study.

Table 1. The design of the study

<table>
<thead>
<tr>
<th>Resource-Dispersing Between-participants</th>
<th>Resource-Directing Within-Participants</th>
</tr>
</thead>
<tbody>
<tr>
<td>Careful Online Planning Group (12 participants)</td>
<td>Pressured Online Planning Group (12 participants)</td>
</tr>
<tr>
<td>Careful Online Planning Group (12 participants)</td>
<td>Pressured Online Planning Group (12 participants)</td>
</tr>
<tr>
<td>Here-and-Now</td>
<td>Here-and-Now</td>
</tr>
<tr>
<td>There-and-Then</td>
<td>There-and-Then</td>
</tr>
</tbody>
</table>

Note. Total N = 24. Participants completed two tasks either under careful online planning condition, or under pressured online planning condition.

The participants were asked to complete two oral narrative tasks. There were two reasons for choosing these tasks. Firstly, most of the previous studies which manipulated the task complexity with respect to the ± Here-and-Now or ± online planning conditions employed oral narrative tasks. Thus, comparing the findings of the present study to the previous studies would be possible with the narrative task type. Secondly, Ellis (1987) argues that oral tasks put learners under more pressure than written tasks, hence oral tasks would be more appropriate for investigating the impacts of the ± online planning.

The data collection took place in individual sessions. Firstly, the participants completed a background questionnaire and a consent form. Then, they completed two oral narrative tasks, one simple task and one complex task. After seeing the picture strips for one minute, depending on their group, they were given either unlimited time (careful online planning group) or limited time (pressured online planning group) to tell their stories.

Here-and-Now/There-and-Then tasks were operationalized following Robinson (1995). On the Here-and-Now task, participants were shown each picture strip for one minute to understand the pictures. After one-minute, they narrated the story in present tense. In addition, they could see the pictures while telling the story. On the There-and-Then task, the participants saw the picture strip for one minute.
Differently from the Here-and-Now condition, they were instructed to tell the story in past tense without looking at the pictures during the storytelling phase. In both conditions, they were asked to narrate the story as detailed as possible.

The availability of online planning was operationalized following Yuan and Ellis (2003). The participants in the careful online planning group started telling their stories right after seeing the pictures for one minute and they had unlimited time. The participants in the pressured online planning group were also shown the picture strips for one minute. However, as in the previous online-planning studies (Ahmadian & Tavakoli, 2010; Ellis & Yuan, 2005; Yuan & Ellis, 2003), these participants were given three minutes to tell their stories. They could see the remaining time on a clock while telling their stories.

6. Materials

6.1. Pre-test material

The TOEFL-ITP scores of the participants were used as a pre-test material to ensure that the participants in the two experimental groups had equivalent proficiency scores. In addition, the listening scores were also examined separately since these scores are argued to be an indicator of learners’ online processing ability (Yuan & Ellis, 2003). Table 2 indicates the descriptive statistics for the two groups. Two independent samples t-tests with the alpha set at .05 were conducted. The results of the t-tests did not show any significant differences either for the total scores, \(t(22) = -.46, p = .65\) or listening scores, \(t(22) = .043, p = .97\).

Table 2. Descriptive statistics for TOEFL scores

<table>
<thead>
<tr>
<th>Test</th>
<th>Careful</th>
<th>Pressured</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Mean</td>
<td>SD</td>
</tr>
<tr>
<td>Listening</td>
<td>57.42</td>
<td>3.75</td>
</tr>
<tr>
<td>Total</td>
<td>570.92</td>
<td>33.37</td>
</tr>
</tbody>
</table>

Note. SD = standard deviation, Min. = minimum, Max. = Maximum.

6.2. Tasks

The oral tasks used in the present study were monologic. All of the participants narrated two stories based on two sets of pictures composed of six picture frames (Heaton, 1966, 1975). In the first picture, there is a boy and a girl going on a picnic. They do not know that their dog is in the picnic basket and has eaten their food (the Picnic task). The second picture is about a boy carrying several boxes. He drops one on the boxes but he does not realize this. A man chases him to give him his box back (the Chase task).

Two picture strips were equal in terms of their storyline complexity and task structure. Storyline complexity is concerned with the types of the events, namely the foreground and background events, in a story. Stories including background events, as well as foreground events, are expected to produce more subordination since in English the explanation of the background events requires the use of syntactic subordination such as because, when, as, and while (Tavakoli & Foster, 2008). Both pictures in this study included both foreground and background events in their storylines. Additionally, the pictures with tight structures, where changing the picture sequence is not possible, are claimed to result in greater accuracy and fluency levels (Tavakoli & Foster, 2008, p. 445). Both pictures in the study had a tight structure, so it was not possible to change the sequence of the pictures. Moreover, the code complexity of both pictures were relatively easy. They both included words related to real life events. The matching of the stories with the task conditions were counterbalanced in order to prevent effects caused from the use of different stories.

7. Measures

The recordings were transcribed by one of the researchers. After coding into the units of analysis, the data were analyzed with respect to the syntactic complexity. Following Foster, Tonkyn, & Wigglesworth (2000), the data were divided into Analysis of Speech units (AS-units), which are argued to be more reliable and consistent indicators of spoken data.
7.1. The Length of Time

Following Yuan and Ellis (2003), the length of time spent on each task by each participant was measured to check whether the participants completed the tasks according to the instructions given to them. For this measure, the total number of seconds spent the two tasks by each participant were calculated. The participants in the careful online planning group were expected to spend more time on task than the participants in the pressured online planning group.

7.2. Syntactic Complexity

Norris and Ortega (2009) suggest employing three complementary syntactic complexity measures which focus on overall complexity, complexity by subordination, and phrasal complexity to capture the different stages of the language. Phrasal complexity is argued to be more useful for measuring the performances of advanced learners since these learners mostly use modifications and nominalizations rather than subordinations in their productions. Although the syntactic complexity levels of the participants were measured at all the three levels recommended by Norris and Ortega, this paper only reports the results of a phrasal complexity measure. The phrasal complexity in this study was defined as the mean length of a clause and it was calculated by dividing the total number of words to the total number of clauses.

8. Results

8.1. The Length of Time

The statistics for the length of time are indicated in Table 3. The careful online planning group spent more time on both the Here-and-Now and There-and-Then tasks than the pressured online planning group. However, independent t-tests showed no significant differences between the two groups.

Table 3. Statistics for Time Spent on Task

<table>
<thead>
<tr>
<th></th>
<th>Careful Means (SD)</th>
<th>Pressured Means (SD)</th>
<th>t</th>
<th>df</th>
<th>Sig.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Time spent on HAN task</td>
<td>93.08 (36.21)</td>
<td>80.83 (24.43)</td>
<td>.972</td>
<td>22</td>
<td>.34</td>
</tr>
<tr>
<td>Time spent on TAT task</td>
<td>81.75 (15.05)</td>
<td>78.75 (25.17)</td>
<td>.354</td>
<td>22</td>
<td>.73</td>
</tr>
<tr>
<td>Total Time</td>
<td>174.83 (40.49)</td>
<td>159.58 (46.92)</td>
<td>.852</td>
<td>22</td>
<td>.40</td>
</tr>
</tbody>
</table>

Note. The time spent on each task is given in seconds. HAN = Here-and-Now, TAT = There-and-Then, SD = Standard Deviation.

8.2. Syntactic Complexity

The descriptive statistics for the phrasal complexity scores of the two groups are indicated in Table 4. This table shows that the careful online planning group achieved higher syntactic complexity scores than the pressured online planning group on both the Here-and-Now and There-and-Then tasks. Moreover, both groups were syntactically more complex on the There-and-Then task.

The data were not normally distributed, so logarithm 10 transformation was applied before conducting a two-factor mixed design ANOVA. The ANOVA results did not indicate any significant main effects for the phrasal complexity measure, $F(1,22) = .03, p = .86$, and for the group, $F(1,22) = .709, p = .41$. The difference between the two tasks were not statistically significant for neither groups. In other words, the participants had similar syntactic complexity levels in both the simple and complex task. Additionally, the two groups did not differ significantly in terms of their phrasal complexity levels. This means that the presence or absence of online planning opportunities did not affect the syntactic complexity of L2 speech production. Moreover, there was not any significant interaction effects for the phrasal complexity and group, $F(1,22) = .001, p = .98$.

Table 4. Descriptive Statistics for Phrasal Complexity

<table>
<thead>
<tr>
<th>Variable</th>
<th>Mean</th>
<th>SD</th>
<th>Min.</th>
<th>Max.</th>
<th>95% CIs</th>
</tr>
</thead>
<tbody>
<tr>
<td>Careful</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Here-And-Now</td>
<td>5.56</td>
<td>0.67</td>
<td>4.82</td>
<td>7.30</td>
<td>[5.13, 5.99]</td>
</tr>
<tr>
<td>There-And-Then</td>
<td>5.64</td>
<td>0.91</td>
<td>4.50</td>
<td>7.63</td>
<td>[5.06, 6.22]</td>
</tr>
<tr>
<td>Pressured</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Here-And-Now</td>
<td>5.44</td>
<td>0.58</td>
<td>4.42</td>
<td>6.13</td>
<td>[5.07, 5.81]</td>
</tr>
<tr>
<td>There-And-Then</td>
<td>5.47</td>
<td>0.62</td>
<td>4.86</td>
<td>6.75</td>
<td>[5.08, 5.86]</td>
</tr>
</tbody>
</table>

Note. SD = Standard Deviation, Min. = Minimum, Max. = Maximum, CIs = Confidence Intervals.

9. Discussion

9.1. The Effects of Time Perspective

Hypothesis 1, which predicted that the more complex task would result in higher syntactic complexity levels, was not confirmed. Although the phrasal complexity measure showed some increase in the There-and-Then task for both the careful and pressured online planning groups, the differences between the simple and complex tasks were not great enough to reach significance. As in line with the previous studies examining the effects of the ± Here-and-Now in L2 oral performance (Gilabert, 2007; Iwashita, et al., 2001; Robinson, 1995), this study showed that There-and-Then tasks may not necessarily lead to increased syntactic complexity levels in L2 speech production.

This lack of significance can be explained by the nature of the tasks. Skehan (2009) states that There-and-Then tasks require learners to do two simultaneous operations. To complete these tasks, learners need to memorize the storyline and the characters and keep them in their memories while telling their stories. However, these simultaneous operations may burden learners’ attentional resources. Therefore, as argued by Skehan (1998) and Skehan and Foster (2001), it may be impossible for learners to pay attention to the syntactic complexity of their performances. Instead, they may use a “safety first approach” and prefer using more automated and simpler L2 structures rather than more complex structures (Skehan and Foster, 2001, p. 189).

The results regarding the syntactic complexity levels in the complex task were more consistent with the Limited Attentional Capacity Hypothesis than the Cognition Hypothesis. While the first one predicted decreased syntactic complexity scores in more complex tasks, the second one hypothesized higher syntactic complexity scores in the There-and-Then task.

9.2. The Effects of Online Planning

Hypothesis 2 predicted the careful online planning to lead to higher syntactic complexity scores than the pressured online planning. Although the careful online planning group scored higher than the pressured online planning group in both the Here-and-Now and There-and-Then tasks, the differences between these two groups were not significant. This was an unexpected result when the consistent results from the previous online planning studies were taken into consideration.

There can be two reasons for the distinct results in the current study. Firstly, the participants in the current study were advanced speakers of English. According to the bilingual speech production model of Kormos (2006, 2011) which is based on Levelt’s speech production model, the three speech mechanisms, conceptualizer, formulator, and articulator, are not autonomous in L2 speech production and they do not work in parallel. Since the availability or absence of online planning is argued to affect learners’ focus on conceptualizer and formulator stages, when learners have time pressure, they may not have enough time to pay sufficient attention to conceptualizing and formulating their speeches. Therefore, they may produce less accurate and syntactically less complex language under the pressured online planning condition. However, Kormos (2006, 2011) states that after a certain proficiency level, the three mechanisms in the speech production model can work in parallel as they do in the first language. In other words, learners with high proficiency may not need to spend as much time as lower level learners on the conceptualization and formulation stages. Therefore, the lack of difference between the two groups in the current study may be due to the high proficiency levels of the participants. Put differently, the given time pressure might not have affected their performances as much as it does for lower level English learners.
Secondly, the operationalization of online planning was different from previous studies. The previous studies gave both a time limit and a sentence production limit to the participants. However, in this study we manipulated the availability of online planning only by giving a limited time to the participants in the pressured online planning group. Therefore, these participants might not have perceived the time pressure as much as we expected.

9.3. The Combined Effects of Time Perspective and Online Planning

Robinson (2005) claims that the effects of task manipulation along resource-directing dimension can be greater when the task is simple along resource-dispersing dimension. In line with this expectation, the highest complexity score was obtained by the careful online planning group for the There-and-Then task. The lowest score, on the other hand, belonged to the pressured online planning group for the Here-and-Now task. Although Gilabert (2007) claims that increased complexity with respect to resource-directing and resource-dispersing features lead to decreased syntactic complexity levels, this claim was not confirmed by the current study. This again can be due to the high proficiency levels of the participants in the study which allowed them to behave similarly in the presence and absence of online planning. Unlike Robinson’s predictions for the combined effects of two-way manipulations, increasing and decreasing the complexity of the tasks with respect to time perspective and online planning do not necessarily result in lower or greater syntactic complexity levels in L2 speech production.

10. Conclusion and Limitations

This study investigated the separate and combined effects of manipulating tasks with regard to two features, namely time perspective and online planning. The results of the study showed no significant differences between the groups (careful online planning and pressured online planning groups) as well as between the tasks (Here-and-Now and There-and-Then tasks). Besides, the two-way manipulations of the tasks did not lead to any significant interaction effects unlike the predictions. However, it should be noted that this study was a pilot study, hence the limited number of participants can be a reason for the insignificant results. Secondly, this study employed picture-based narrative tasks to compare the results of the present study to the previous studies. However, these tasks may not have been challenging enough for the participants who were highly proficient in English. More challenging tasks may show different results.

References

