1. Introduction

It has long been known that children produce comparatives that differ from the adult target. See, for example, (1) and (2) below.

(1) I’m not stronger to do that.
Rachel 2;9 (Gathercole 2009)
(2) I’m like once less braver than Saul. I’m much lesser braver than Saul.
Sadie 3;11 (Gathercole 2009)
(3) Put it more further away.
Olga 4;3 (Feider 1973)
(4) (be)ause it’s gonna be more dirtier #huh Ma?
Sarah 4;10 (Brown 1973)

However, it is also well known that production is not always indicative of comprehension in child language development. Thus, while children’s productions may reflect use of the comparative in place of another degree construction (1), use of negative and positive comparative morphology at once (2), double marking of the comparative morpheme (3)-(4), and may indicate that the path to adult-like production takes detours along the way (Gathercole, 2009; Moore, 1999), these aberrations do not tell us whether or not they assign a correct interpretation to a comparative construction.

Early research on children’s interpretation of the comparative construction revealed that children may not in fact understand comparative constructions correctly (Bishop & Bourne, 1985; Clark, 1970; Donaldson & Wales, 1970; Gathercole, 1985, 2009; Moore, 1999; Nelson & Benedict, 1974; Piaget, 1928; see also Syrett, 2016). For example, in some instances it appears that children may not interpret or attend to the entire construction, and instead assume that the subject of the comparative have some positive degree of the property expressed by the predicate in the first clause. Thus, asserting that X is bigger than Y should simply mean that X is big. In others, it appears that children think that both entities should have the property in question (perhaps to the same degree): thus, both X
and Y should be big. (See Bishop & Bourne 1985; Clark, 1970; Donaldson, 1963; Piaget, 1928; Townsend, 1974). More recent investigations of children’s interpretation of differential comparatives has supported this ‘nominal’ interpretation by both English and Japanese speaking children, but has attributed it to the presence of the measure phrase, signaling comparison to a minimal ‘zero’ standard (Arii, Syrett & Goro, 2017). Thus, while children are able to retrieve a contextual standard with implicit comparisons of gradable adjectives in the positive form (Barner & Snedeker, 2008; Smith, Cooney, & McCord, 1985; Syrett et al., 2006; Syrett, Kennedy, & Lidz, 2010), they struggle to retrieve a contextual standard that competes with one specified by the grammar.

At the same time, children seem to interpret simple non-differential comparatives correctly, even as control items in tasks tapping into more complicated constructions (Gor & Syrett, 2015; Syrett & Lidz, 2011). Where children appear to further deviate from adults in these tasks is in their interpretation of the elided material: children allow for ‘sloppy’ pronominal identity between a pronoun in the matrix clauses and a pronoun in elided portion of the standard clause, as in (5) (Gor & Syrett, 2015), while adults do not.

(5) She gave more cones to Winnie-the-Pooh than ⟨she gave d-many cones⟩ to Sleeping Beauty’s godmother.

However, the difference here appears to be isolated to the interpretation of the pronoun, since in other tasks, children demonstrate facility with constraints imposed by ellipsis on identity with the antecedent and the Quantifier Raising operation that is required in the interpretation of comparative constructions (Foley et al., 2003; Syrett, 2015; Syrett & Lidz, 2009, 2011). Moreover, the earlier studies used methodologies and prompts that may have underestimated children’s comprehension of comparatives.

Thus, despite considerable interest in children’s production and interpretation of comparative constructions over the years, we are left with an incomplete picture of their knowledge. The current research aims to rectify that situation by returning to basic comparative constructions with gradable adjectives, simplifying the task and making it interactive, and probing children’s interpretations within a tightly constrained hypothesis space. Previewing our findings, we find that with this approach, most children demonstrate an adult-like interpretation of the basic comparative construction. At the same time, some children appear to access another type of degree construction (comparable to the equative) through the comparative, and some appear to allow more flexibility with the elided material. However, the source of these divergences – whether it be through the grammar or the influence of the task – remains unclear.

2. Delineating the Hypothesis Space

We begin by assuming that in English, comparative constructions such as (6), which features a gradable adjective, involve mapping individuals onto degrees on
a scale, giving rise to an ordering relation, such that the degree to which X exhibits a property expressed by the dimension measured by the scale (e.g., height) is compared to the degree to which Y exhibits that property, as expressed in (7), which also illustrates the Quantifier Raising (QR) operation invoked by the degree phrase.

(6) X is taller than Y.
(7) a. X is taller than Y (is tall).
 b. \[
 \llbracket \text{-er than } \llbracket <d,t> \text{ how1 Y is } t_1 \text{ tall} \rrbracket \llbracket <d,t> 2 \text{ X is } t_2 \text{ tall} \rrbracket \rrbracket \\
 = 1 \text{ iff } \max(\lambda d. X \text{ is } d\text{-tall}) > \max(\lambda d'. Y \text{ is } d'\text{-tall})
 \]

We might assume that children are able to deploy these grammatical operations (QR, interpretation of ellipsis, and comparison of degrees on a scale) with adult-level facility, resulting in the correct interpretation. However, it may be that children face other challenges when interpreting comparatives. For example, they may be restricted to interpreting the first part of the comparative, because of their incremental processing of the utterance leads them to arrive at an assertion such as (8), and their inability to revise this representation on the fly (see Trueswell et al., 1999) leads them to retrieve a standard provided by the gradable adjective itself, which is distinct from the one expressed by the standard clause (than Y). In these cases, children would arrive at the infamous nominal interpretation.

(8) X is tall(er).

Alternatively, children might assume that an expression such as (6) should be interpreted as expressing partitions between X and Y, such that X has the property expressed by the gradable adjective, while Y does not. This approach is known as the ‘A-not-A analysis’ (see Klein 1980, 1982), since it involves negation as part of the second clause, as in (9).

(9) [X is tall] and [Y is not tall].

In fact, this type of representation is used in languages such as Hixkaryana to express comparison, as shown in (10) below from Stassen (1984).

(10) Kaw-ohra naha Waraka, kaw naha Kaywerye
tall- NOT he-is Waraka, tall he-is Kaywerye
 ‘Kaywerye is taller than Waraka.’

While there is evidence that children correctly interpret implicit comparison, and differentiate among types of gradable adjectives, sharply gesturing towards scalar representations involving degrees (see Syrett et al., 2006, 2010), one might propose that they consider an A-not-A analysis for comparative constructions as they determine whether they are acquiring a language such as Hixkaryana or
English (see Beck et al. 2009). Note that this account is slightly different than one that proposes that children have both possibilities in their grammar and wait to encounter evidence in the input for one version or another. What are considering here is that they would hear the English version of the comparative, and erroneously analyze it as if it were an A-not-A construction. This therefore requires them somehow misinterpreting the comparative morpheme and *than*.

Another possibility to consider that also requires children misanalyzing parts of the comparative construction is one in which they do not represent the comparative construction as one that they have in their grammar, but instead re-analyze it as a construction that they *do* have in their grammar—a possibility that Tavakolian (1981) entertained for children’s apparent misinterpretation of relative clauses. Thus, in the absence of a grammatically licensed representation, they misanalyze comparatives as conjunctions, as shown in (11).

(11) \[X \text{ is taller than } Y = [X \text{ is tall}] \text{ and } [Y \text{ is tall}]. \]

Finally, given something like a conjunctive approach, children might assume that there is a constraint on identity, such that both \(X\) and \(Y\) must possess the property to the same degree. This possibility is captured in (12). In this case, it is as if children are re-analyzing the comparative as an equative. This possibility might also arise if children have a degree semantics, and misanalyze the comparative as another degree construction, namely the equative.

(12) \[X \text{ is taller than } Y = [X \text{ is d-tall}] \text{ and } [Y \text{ is d-tall}] = X \text{ is as tall as } Y. \]

These five hypotheses (interpretive strategies) are summarized in Table 1.

Table 1. Hypotheses and possible interpretation strategies for comparatives

<table>
<thead>
<tr>
<th>Hypothesis</th>
<th>Interpretation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Adult Grammar</td>
<td>(d{ADJ_x} > d_{ADJ_y})</td>
</tr>
<tr>
<td>Nominal Interpretation</td>
<td>(X = ADJ)</td>
</tr>
<tr>
<td>Partitions (A-not-A)</td>
<td>(X=ADJ \land Y\neq ADJ)</td>
</tr>
<tr>
<td>Conjunction</td>
<td>(X=ADJ \land Y=ADJ)</td>
</tr>
<tr>
<td>Equative Strategy</td>
<td>(d{ADJ_x} = d_{ADJ_y})</td>
</tr>
</tbody>
</table>

In Experiment 1, we present a paradigm that allows us to test these hypotheses simultaneously, adjudicating between them. We complement these experimental results with those of Experiment 2, which uses a distinctly different paradigm in order to assess whether children are attending to the entire comparative construction through the end of the standard phrase to arrive at their interpretation. The combined results indicate that the majority of children in our studies are interpreting comparative constructions just as adults do.
3. Experiment 1

3.1. Participants

43 children (20 boys, 23 girls) between 3;01-5;09 years (mean age = 4;06) and 18 English-speaking adult controls participated. Two additional children were excluded for not completing the task. Child participants were recruited from local daycares and preschools in Central NJ and the Greater Philadelphia area. Adults were undergraduates at Rutgers University–New Brunswick, who received course credit in introductory Linguistics or Cognitive Science courses for their participation.

3.2. Design

The experiment consisted of two parts, which always took place in the same order: (i) a Sorting Task and (ii) a Comparison Task. Each experimental session began the same way. Participants were shown two felt cloths, placed on the table in front of them, the blue felt to the left and the red felt to the right. Participants were shown a series of sets of objects one at a time. There were eight sets of objects: four target sets and four control sets (with order of presentation pseudorandomized). For each set, the procedure was the same.

The four target sets each consisted of seven objects and were the same stimuli used in Syrett et al. (2006, 2010). They represented three types of gradable adjectives and their corresponding properties (Kennedy and McNally, 2005): relative (cubes of different sizes for big, rods of different lengths for long), absolute minimum standard (boards with a different number of bumps, including one with no bumps, for bumpy), and absolute maximum standard (containers with different amounts of fullness for full). The four control sets did not involve difference in degree of a property, but instead difference in object kind (e.g., birds and polar bears) or color within a kind (e.g., yellow and pink). These were structured so as to control for different methods of sorting (even sorting between felt cloths, or uneven sorting where one got slightly more than the other, or all but one object was sorted onto one cloth).

The experimenter placed the objects on the table in front of the child in no particular order and delivered the sorting prompt. The comparative prompt for the target items is in (13). The object categorization prompt for the control items is in (14). The instructions for the target items featured the positive form of each target gradable adjective in the prompts, since children are known to understand the positive (unmarked) versions before the negative (marked) form with antonyms (Brewer & Stone 1975; Clark, 1972) and to avoid confounds with variability in labeling the non-positive property.
(13) Look at these! Wow, they’re (all) different! Do you see that?
Let’s put all the X ones over here [blue felt]. Can you do that? Put all the X ones over here. [child sorted]
Now, let’s put all the OTHER ones over here [red felt]. Can you do that?
Put all the OTHER ones over here. [child finished sorting]
Great! All the X ones are over HERE, and all the OTHER ones are over HERE! Now, listen carefully. I’m gonna ask you some questions...

(14) Look at these! Wow, they’re different! Do you see that?
Let’s put all the Xs over here [blue felt]. Can you do that? Put all the Xs over here. [child sorted]
Now, let’s put all the other ones over here [red felt]. Can you do that?
Put all the other ones over here. [child finished sorting]
Great! All the Xs are over HERE, and all the other ones are over HERE! Now, listen carefully. I’m gonna ask you some questions...

The result of the sorting task was that children had created two partitions of the objects: one where the objects had the property in question (e.g., were all judged to be big or bumpy or birds, and one where the objects were not), as in Figure 1.

Figure 1. Example of sorting blocks into ‘the big ones’ (on the blue felt to the left) and ‘the other ones’ (on the red felt to the right) in the sorting task of Experiment 1. Comparative prompts targets pairs within and across these partitions.

After the children sorted each of the objects in a set, they were asked a series of comparative questions, using members of the individualized partitions that they had created. Each of the target prompts had the form in (15), where A stands for the gradable adjective (big, long, bumpy, full).

(15) Is X A-er than Y?

The objects X and Y selected for the comparative prompts either both came from the A group that were judged to have the property in question, from the ‘other’ group that did not have the property in question (the ‘¬A group’), or one from the A group and one from the ¬A group. The responses to these comparatives should depend on the children’s representation and interpretation of the comparative, as outlined above. In addition, we included a ‘reverse’ control prompt, in which Y came first, as in (16), the response to which should always be ‘no’.

(16) Is Y A-er than X?
The number of comparative prompts for the targets depended on the gradable adjective. For relative gradable adjectives, all four comparative prompts were possible. For absolute gradable adjectives, because the adult-like interpretation would result in only one object on one of the felts (i.e. the ‘full’ container by itself, or the ‘non-bumpy’ board by itself), it would not have been possible to select two objects from that partition.

3.3. Predictions

We generated predictions for both the sorting and the comparative tasks. For the sorting task, we predicted that the partitions for relative gradable adjectives would split the object set somewhere around the midpoint, such that each felt had between 3-4 items. This is because the standard is context-dependent for these adjectives. By contrast, we predicted that the standard for the maximum standard gradable adjectives would be endpoint-oriented, such that for the containers, only the full container would be on the blue felt, and the non-full containers on the red felt, and for the boards, all of the bumpy boards on the blue felt and the one bump-free board on the red felt.

For the comparative task, we generated a set of predictions of when children should accept or reject the comparative based on the hypotheses outlined earlier, as outlined in Table 2 below.

Table 2. Predictions for comparative prompts

<table>
<thead>
<tr>
<th>Hypothesis</th>
<th>Interpretation</th>
<th>X= A</th>
<th>Y= A</th>
<th>X= ¬A</th>
<th>Y= ¬A</th>
<th>Reverse</th>
</tr>
</thead>
<tbody>
<tr>
<td>Adult</td>
<td>d_x > d_y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td>Nominal</td>
<td>X= A</td>
<td>Y</td>
<td>N</td>
<td>Y</td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td>A-not-A</td>
<td>X=a ∧ Y≠A</td>
<td>N</td>
<td>N</td>
<td>Y</td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td>Conjunction</td>
<td>X=a ∧ Y=A</td>
<td>Y</td>
<td>Y/N</td>
<td>N</td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td>Equative</td>
<td>d_x = d_y</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
</tr>
</tbody>
</table>

There is one cell that calls for some explanation. The conjunctive hypothesis predicts that both X and Y should have the property in question. However, some children might think that both objects should either have the property or not have the property. Thus, we included that possibility in the second column. Note that these patterns make it easy to discard data from a child who exhibits a ‘yes’ bias. However, a ‘no’ bias is consistent with an equative interpretation. Because children had multiple prompts per set, we required that the majority of their responses reflect the pattern across a particular row in order for them to be classified as assigning that interpretation to the comparative.
3.4. Results
3.4.1. Sorting Task

We turn first to the results of the sorting task. Since adults patterned as anticipated, we focus in on the results of the children, our target population. As predicted, children reliably differentiated between adjectives based on scalar structure, as shown in Figure 2. In the figure, the x axis corresponds to the seven objects in the set, with 1 corresponding to the object that instantiated the property to the greatest degree (or that did, in the case of *full*), and should have been sorted onto the blue felt, and 7 to the object at the extreme end, which did not have the property, and should have been sorted onto the red felt.

For the relative gradable adjectives, all of the participants placed the biggest and longest items in the A partition on the blue felt, and the smallest and shortest items in the ‘other’ group in the red felt, and the aggregate standard seemed to fall somewhere around the midpoint. By contrast, all of the bumpy boards were sorted into the A group, with the one non-bumpy board in the ¬A group on the red felt. There was, however, unanticipated variation with the sorting for *full*: while some children sorted as adults did, others surprisingly treated *full* as if it meant *filled*, sorting all containers with some degree of substance onto the blue felt, and leaving the empty container alone on the red felt. This pattern is reflected in Figure 2. Overall, however, the results aligned with the pattern observed by Syrett et al. (2006) in their scalar task with the same items (with *spotted* in place of *bumpy*), and with Barner & Snedeker (2008) in their judgment task for the relative gradable adjective *tall*. The results thus demonstrate that a task that asks participants to create partitions within a set yields comparable results to one that asks them to render explicit linguistic judgments about properties.
3.4.2. Comparative prompts

We turn now to the comparison task. Participants patterned as expected and without any difficulty with the control items, so we leave those aside. Recall that we categorized children by their response patterns, using these to identify their interpretation of the comparative. The results for the target comparative prompts are presented in Table 3. This distribution of responses differs significantly from chance (Fisher’s exact test, $p < 0.01$). The data from three children were discarded due to a ‘yes’ bias, while four other children displayed an inconsistent response pattern that did not allow us to categorize them. As the results indicated, the vast majority of children performed in an adult-like way, interpreting the comparative correctly. The ‘nominal’ response pattern predicted by earlier researchers was only observed in one of the children, as was the ‘conjunction’ response pattern, which would have arisen from an incorrect representation. Perhaps what was surprising was the five children who seemed to interpret the comparative as an equative, a response pattern that deserves further attention.

Table 3. Results for comparative prompts in Experiment 1

<table>
<thead>
<tr>
<th>Hypothesis</th>
<th>Interpretation</th>
<th># of children</th>
</tr>
</thead>
<tbody>
<tr>
<td>Adult Grammar</td>
<td>$d_{ADJ_x} > d_{ADJ_y}$</td>
<td>29</td>
</tr>
<tr>
<td>Nominal Interpretation</td>
<td>$X = \text{ADJ}$</td>
<td>1</td>
</tr>
<tr>
<td>Partitions (A-not-A)</td>
<td>$X = \text{ADJ} \land Y \neq \text{ADJ}$</td>
<td>0</td>
</tr>
<tr>
<td>Conjunction</td>
<td>$X = \text{ADJ} \land Y = \text{ADJ}$</td>
<td>1</td>
</tr>
<tr>
<td>Equative Strategy</td>
<td>$d_{ADJ_x} = d_{ADJ_y}$</td>
<td>5</td>
</tr>
</tbody>
</table>

Thus, the children in this task displayed sophisticated knowledge of the comparative construction that did not appear to reflect an impoverished grammar or derailment as a consequence of parsing. At the same time, our task may have facilitated the comprehension of the comparative construction by presenting children with gradable adjectives, all of which took the -er comparative morpheme, and the entities in the matrix and standard clauses were supposed to be mapped onto degrees on the same dimensional scale. We therefore wanted to probe children’s understanding of comparatives in a slightly more demanding task, in which they had to attend to the entire comparative, including the entire standard clause, in order to respond correctly. We turn now to Experiment 2.

4. Experiment 2

In Experiment 2, we presented children with sets of images on a computer screen, accompanied by comparative prompts in the form of an assertion, and asked them to either agree or disagree. The comparatives were either subcomparatives with the same subject in the matrix and standard clause, as in (17a), which involved ellipsis under identity, or subcomparatives with a different subject and object, as in (17b), which did not involve ellipsis. Note that partial
interpretation of either sentence will result in a distinctly different comparative interpretation than the one intended (e.g., \(X \) has more \(A \), or \(X \) has more \(A \) than \(Y \)).

(17) a. \(X \) has more \(A \) than \(B \) = \(X \) has more \(A \) than \(\langle \langle X \rangle \text{ has} \rangle B \).

b. \(X \) has more \(A \) than \(Y \) has \(B \).

4.1. Participants

20 children (11 boys, 9 girls) between the ages of 4;02 and 5;11 (mean age = 5;0) participated in this experiment. As before, child participants were recruited from the Central NJ and the Greater Philadelphia area. An additional six children were excluded for failure to respond correctly to at least half of the control items, and one child was excluded for not completing the task. 26 adult controls, all undergraduates at Rutgers University, also participated for extra credit.

4.2. Design

The experiment began with a three-item training session to familiarize children with the task. The main experimental session was split into two contiguous blocks: the first featured same-subject comparatives, as in (18), and the second featured different-subject subcomparatives, as in (19). Each block had 12 target prompts. A brief block of six control items separated the two main target blocks, for a total of 30 items in the experimental session. Children had to respond to at least four of these six control items correctly to have their data included. Anticipated responses of yes/no (true/false) were counterbalanced within each block.

(18) The monkey has more apples than bananas.

(19) The turtle has more cookies than the lion has oranges.

The sentences were accompanied by slides via PowerPoint. For each sentence, participants were shown an image of two animals, each of which had two sets of objects, as in Figure 3.

![Figure 3. Example images for comparative prompts in Experiment 2](image)
Prior to the presentation of each picture, the puppet made a prediction about what they would see, delivering the target sentence. The image was then displayed, the experimenter asked the puppet to repeat their prediction, the puppet repeated the sentence, and the child rendered a judgment of the sentence. Children were asked to provide justifications for their responses, and the experimenter encouraged them to refer to the image in support of their justification. The quantity of images displayed in the images (within a character’s sets and across characters’ sets) was manipulated in order to systematically affect the truth value of the sentences.

4.3. Results

The results of Experiment 2 are captured in Table 4. As in Experiment 1, we took the yes/no response pattern as being indicative of a particular interpretive strategy.

Table 4. Results for target comparative sentences in Experiment 2

<table>
<thead>
<tr>
<th>Interpretation</th>
<th># of children</th>
</tr>
</thead>
<tbody>
<tr>
<td>Adult Grammar</td>
<td>12</td>
</tr>
<tr>
<td>Nominal</td>
<td>0</td>
</tr>
<tr>
<td>Possession of objects</td>
<td>1</td>
</tr>
<tr>
<td>Comparison of overall cardinality</td>
<td>5</td>
</tr>
<tr>
<td>‘Sloppy ellipsis’</td>
<td>2</td>
</tr>
</tbody>
</table>

As in Experiment 1, the majority of children accessed an adultlike interpretation of both comparative types, providing justifications that supported this interpretive strategy. For example, in response to the image and sentence in Figure 4, one such child responded, No, because the apples have two and the bananas have three (ID79 4;02). And as in Experiment 1, no child displayed the ‘nominal’ response pattern.

Figure 4. Example sentence-image pairing for same-subject comparative in Experiment 2

Where children did make errors was in the following three ways. First, one child seemed to respond by simply checking to make sure that the animal(s) had the objects mentioned by the NPs in the target sentence. For example, the child
accepted the sentence-image pair in Figure 4, since the monkey has both apples and bananas. Second, five children compared the quantities of objects in a way that was not licensed by the comparative. For example, they might have summed together the apples and bananas for each animal and compared these amounts. Finally, two children displayed what we casually refer to here as a type of ‘sloppy ellipsis’ with the single subject comparatives, in which they seemed to allow a different subject to have been elided in the standard phrase than the matrix subject, thereby not requiring ellipsis under identity with the antecedent. For example, in response to the prompt in Figure 4 (The monkey has more apples than bananas), the child referred to the number of apples that the monkey has and the number of bananas that the owl has for an interpretation that was something like, ‘The monkey has more apples than (the owl has) bananas’.

At the moment, we do not have a compelling explanation for why the cardinality and ‘sloppy ellipsis’ interpretation would emerge, other than a suspicion that some children perhaps thought that they had to include all of the elements in the image, causing them to incorporate objects and entities they might otherwise not have in the same subject comparatives. However, this pattern merits further exploration, given the way in which children responded to comparatives with elided pronouns in Gor & Syrett (2015).

5. Conclusions

Together, the two studies reported in this paper provide new evidence that by four to five years of age, many children do have access to an adult-like interpretation of the comparative, contra earlier claims. In Experiment 1, children correctly interpreted comparatives with gradable adjectives, and in Experiment 2, they correctly interpreted comparatives involving a comparison of object quantities. By tightly controlling the stimuli in order to probe a constrained range of interpretive strategies, we were able to isolate the specific response patterns that deviated from adult-like responses, leading us to then ask, what gives rise to these aberrant response patterns in children? Is it an outcome of their representations, or is it a task effect? We are currently exploring possible causes in follow-up research. However, one thing is clear: children do not mis-interpret comparatives as nominals, and they do not fail to attend to and incorporate the standard clause. Nor do they neglect the comparison itself for want of the structure in their grammar, re-interpreting the prompt as conjunction. Rather, where errors occurred, they implicated other factors and interpretations that had not been pinpointed before.

Why then did so many earlier researchers claim that children could not interpret comparatives. We think there are three main reasons. First, some researchers (such as Piaget, among others) used prompts that taxed the memory, and called upon the summoning up of real-world knowledge without a visual prompt. Second, previous experiments were conducted prior to theoretical advances in the study of gradable adjectives and comparisons in linguistics, and therefore could not have known how to constrain the hypothesis space and the
task accordingly. Finally, emphasis on production of comparatives may have masked children’s underlying competence. The current results, however, strongly suggest that children have acquired the correct meaning of comparatives early in development, well before they consistently produce the correct adult-like forms.

References

