Interactions between Number and Definiteness: Vietnamese Children’s Comprehension of Definite Noun Phrases

Ni-La Lê, Hannah Forsythe, and Cristina Schmitt

1. Introduction

Languages can realize the same semantic primitives in vastly different ways, and so it is important to consider a wide variety of languages when making generalizations about how children acquire semantic features. Here, we consider the acquisition of definiteness, a feature that appears to be acquired rather slowly in many languages. This paper contributes data on the acquisition of definite noun phrases in a new language, Vietnamese, which differs from both Western languages and other classifier languages like Mandarin and Japanese. Using a comprehension task previously run with Spanish- and English-acquiring children (Munn et al., 2006), we examine the interpretation of singular and plural definite noun phrases by Vietnamese-acquiring children ages 3 to 7.

We begin with a description of what children must learn in order to interpret definite noun phrases, a summary of previous findings on the acquisition of definite noun phrases, and a description of how number and definiteness are realized in Vietnamese. We then present the task. Results show early comprehension of definiteness, with some number errors, in contrast to English- and Spanish-acquiring children who comprehend number while making definiteness errors. We close with the suggestion that this difference is due to the kind of information children choose to prioritize when the task becomes difficult. Children acquiring languages with grammaticalized number (Spanish, English) prioritize number, resulting in definiteness errors, while children acquiring the more complex system of classifiers and pluralizer morphemes of Vietnamese prioritize definiteness, resulting in number errors.

2. The acquisition problem

Regardless of how definiteness and number features are realized morphologically across languages, children must learn to extract the same
information from them. To interpret any given definite noun phrase, the child must know at least three different pieces of information: first, the meaning of the noun and any accompanying modifiers; second, whether the noun phrase is singular or plural; and third, where to find the discourse referent that uniquely satisfies these properties, in accordance with the uniqueness presupposition carried by the definite feature.

The uniqueness presupposition of a definite noun phrase is satisfied differently depending on its number. For plural definite noun phrases like the dogs next to the tree, the uniqueness presupposition is satisfied by finding a plural set of dogs-next-to-the-tree that is large enough to be unique, i.e., the maximal set of dogs next to the tree. In contrast, to interpret a singular definite noun phrase like the dog next to the tree, the uniqueness presupposition is satisfied by restricting the noun phrase’s domain of reference to include only a single, unique dog close to the tree. This is easily satisfied in situations where there is only one dog next to the tree, but if there is more than one, it is necessary to interpret the noun phrase more strictly, to mean something like the dog closest to the tree.

This rather complex coordination of information makes the acquisition of definite noun phrases a non-trivial task—and an especially interesting case to study across languages that realize number and definiteness differently. The next section describes previous work on the acquisition of definiteness, while the following sections seek to expand that literature to include a new language: Vietnamese.

3. Acquisition background

Previous work on the acquisition of number and definiteness markers finds that number is acquired earlier. English-speaking children master the conceptual distinction between one and more-than-one around 20-24 months of age (Fenson et al., 1994; Barner et al., 2007), and within the next year (24-36 months) they learn to produce the plural marker in the correct contexts and even use it to learn novel words (Brown, 1973; Mervis and Johnson, 1991; Kouider et al., 2006). In contrast, the acquisition of definiteness appears to be much more protracted. Children as old as 5 incorrectly use the definite determiner to refer to non-unique objects, saying things like Give me the ball! even when multiple identical balls are present (Maratsos, 1976; Karmiloff-Smith, 1979; Schaeffer and Matthewson, 2005). However, comprehension tasks indicate that children do at least understand the contrast between definites and indefinites; they are aware that definites maintain reference while indefinites introduce new referents (Modyanova and Wexler, 2007; de Cat, 2011).

A number of different hypotheses have been advanced to explain children’s misuse of definites. Early proposals by Maratsos (1976) and Karmiloff-Smith (1979) suggested that errors stem from an egocentric tendency to use definite forms for referents under the child’s own focus of attention, ignoring the
interlocutors’ attentional state. Observing that children overextend definites even when no elements are in focus, Wexler (2003, 2011) proposes alternatively that definiteness errors arise because children’s initial representation of the definite determiner lacks the uniqueness presupposition (dubbed the ‘no Maximality Hypothesis,’ Wexler, 2011: p. 25).

More recent work (Drozd, 2001; Munn et al., 2006) has proposed that children have the uniqueness presupposition but experience problems restricting the domain of reference in order to satisfy it. The ‘no Domain Restriction’ hypothesis, as we will call it, explains an otherwise puzzling result from Munn et al. (2006), who report that English- and Spanish-acquiring preschoolers were able to associate plural definite noun phrases like *the dogs next to the tree* with a unique plural (i.e., maximal set) but were unable to associate singular definite noun phrases like *the dog next to the tree* with a unique singleton set. The difference lies in the fact that the definite singular, but not the definite plural, requires the child to restrict the noun phrase’s domain of reference to mean something like *the dog closest to the tree*.

A major limitation of these proposals is that they have been based almost exclusively on results from Western European languages, which realize definiteness through dedicated definite and indefinite determiners and which have a grammaticalized binary number distinction. In order to get a more complete picture of the cross-linguistic acquisition of definite noun phrases, we study the comprehension of definite noun phrases in Vietnamese—a language with neither of these characteristics.

4. Vietnamese noun phrases

Vietnamese makes an interesting case study because it relies on a system of classifiers and pluralizers quite unlike the number and definiteness morphology of Western European languages. Like other classifier languages, Vietnamese allows bare noun phrases, which are underspecified for definiteness and number. Depending on the predicate and the context in question, bare nouns can have generic, existential, indefinite and definite readings, as well as singular and plural readings. Hence, a bare noun like *chó* (‘dog’) can mean either ‘a dog’, ‘the dog’, ‘the dogs’, or just ‘dogs’.

Nouns preceded by a classifier (1a) are interpreted as singular and definite. This fact might make it seem like Vietnamese classifiers are portmanteau morphemes, encoding both singularity and definiteness, but in fact, classifiers can also be found in indefinite noun phrases and in plural noun phrases. For

1 These authors nevertheless assume different underlying reasons for children’s ‘egocentric’ behavior. Maratsos suggests that children are aware that definites must signal specificity of reference for speakers but not necessarily hearers, while Karmiloff-Smith suggests that children have a more deictic representation of definite noun phrases than adults do.

2 This is different from most other classifier languages (ex. Japanese, Korean, Thai) which do not allow a CL-N sequence to appear in isolation.
example, adding the numeral one (một) to the CL-N sequence forces a singular indefinite interpretation (1b), while adding the pluralizer các triggers a plural, definite interpretation (2a). Vietnamese also has a second pluralizer những (2b), which triggers a plural interpretation but whose definiteness status remains unclear. While all studies agree that the noun phrases pluralized by các are definite (Nguyen, Tai Can, 1975; Nguyen, Hung Tuong, 2004; among others), most authors claim that the pluralizer những indicates only a subset of a given set (Thompson, 1965; Nguyen, Tai Can, 1975) and that its interpretation is indefinite and specific (Nguyen, Hung Tuong, 2004). However, others argue that the interpretation of những varies on a continuum somewhere between indefinite and definite (Cao, 1998; Bui, 2000), while in Lê and Schmitt (2016), we argue that noun phrases with những can be either definite or specific. It should also be noted that những imposes the additional requirement that the noun be modified, as illustrated in (2b).

(1) a. con chó
 CL dog
 ‘the dog’

b. một con chó
 a/one CL dog
 ‘a dog’

(2) a. các con chó
 CAC-PL CL dog
 ‘the dogs’

b. những con chó *(bự)
 NHUNG-PL CL dog big
 ‘the big dogs’

Finally, the quantifier tất cả (‘all’) can be added to a pluralized noun phrase to produce a maximal reading. Once again, if the pluralizer used is những, the noun must be modified (3b).

(3) a. tất cả các con chó
 all CAC-PL CL dog
 ‘all the dogs’

b. tất cả những con chó *(bự)
 all NHUNG-PL CL dog big
 ‘all the big dogs’

3 Again, Vietnamese differs from other classifier languages, in that the pluralizer requires the presence of a classifier.
Given this very different system for realizing definiteness and number, Vietnamese makes a good addition to the study of the acquisition of noun phrases. We begin by asking whether children can associate definite noun phrases like those in (1a) and (2a-b) to sets with the correct number and definiteness properties.

5. Research questions

We choose to replicate Munn et al.’s (2006) task testing the comprehension of singular and plural definite noun phrases because this will allow us to make cross-linguistic comparisons with English- and Spanish-acquiring children. In particular, we will be able to address three questions:

(4) **Q1:** Do Vietnamese-acquiring children know number, i.e., do they associate CL-N sequences to singleton sets and các/những-CL-N sequences to plural sets?

Q2: Do Vietnamese-acquiring children know definiteness, i.e., do they associate both CL-N and các-CL-N sequences to unique sets? What about những-CL-N sequences?

Q3: How does their behavior compare to children acquiring other languages such as English and Spanish?

6. Hypotheses and predictions

Since the interpretation of definiteness is dependent on number properties, a logical hypothesis is that number will be acquired before definiteness, across languages. If so, we would expect Vietnamese children to show the same behavior as English- and Spanish-acquiring children who participated in this task, showing adult-like interpretation of number morphology but committing definiteness errors. The ‘No Maximality’ and ‘No Domain Restriction’ hypotheses make different predictions about what those definiteness errors should look like. If children lack the uniqueness presupposition (per ‘No Maximality,’ Wexler 2003, 2011) then they should associate singular definite noun phrases to non-unique singleton sets and plural definite noun phrases to non-maximal plural sets. Alternately, if children do have the uniqueness presupposition but instead have trouble with domain restriction (‘No Domain Restriction,’ per Drozd, 2001; Munn et al., 2006), then they should produce definiteness errors in the singular condition only.

On the other hand, it is also reasonable to hypothesize that the acquisition of number and definiteness is dependent on their morphological realization in the target language. For Vietnamese, this could lead to one of two scenarios. One possibility is that the general lack of a one-to-one correspondence between individual morphemes and individual number and definiteness features delays Vietnamese children’s acquisition of both features. If so, they should fail to distinguish between singular and plural definite noun phrases and show no
tendency to associate either one to unique/maximal sets. The other possibility is that children initially associate the classifier with definiteness. If so, they should treat any noun phrase with a classifier as definite and ignore the singular-plural distinction until later on in acquisition.

7. Experimental design

7.1. Subjects

Children were recruited from three kindergartens in Ho Chi Minh City, Vietnam. 99 children participated, with 34 exclusions for refusal to participate or failure to name the animals and landmarks during the pretest. Of the remaining 65 children who finished the test, 7 were excluded from analysis for failing to provide at least 3 out of 8 correct answers during training and control conditions. The data presented here is from 58 subjects, including 11 3-year-olds (M=3;7, range: 3;2-3;11), 12 4-year-olds (M=4;5, range: 4;0-4;10), 15 5-year-olds (M=5;4, range: 5;0-5;11), 13 6-year-olds (M=6;6, range: 6;0-6;11), and 7 7-year-olds (M=7;4, range: 7;0-7;7). 8 native Vietnamese-speaking adults (ages 25 to 47), who were studying or working at Michigan State University, also participated as controls.

7.2. Materials

Our experiment was a replication of the act-out task reported in Munn et al. (2006), illustrated in Figure 1. For logistic and cultural reasons, we used a toy tree (rather than a barn) as one of the two landmarks, and we used animal types familiar to Vietnamese children: mèo (‘cat’), chó (‘dog’), gà (‘rooster’), and cá (‘fish’). Additionally, we used groups of four animals per side, rather than the original three.4

Figure 1. The setup of the experiment

Participants were instructed to choose the appropriate animal or animals using prompts as in (5). Three test conditions used definite singular and definite plural noun phrases (the latter containing either the pluralizer cáć or những). Three control conditions used noun phrases which either lexically specified a singleton set using the numeral one or lexically specified the maximal set with

4 The rationale for this change was that some studies show an effect of set size on children’s comprehension of definites (Modyanova & Wexler 2007; de Cat, 2011). A previous iteration of the task with only three animals per side produced similar results.
the quantifier *all*, accompanied by a pluralizer (*các* or *những*). Target responses are shown in Table 1.

(5) Example test items

a. Đưa cho cô {Ø /các /những} con chó đứng kế cây
 Give for aunt {Ø /PL-cac/PL-nhung} CL dog stand next CL tree
 ‘Give me the dog/dogs next to the tree.’

Example control items

b. Đưa cho cô {một /tất cả các /tất cả những} con chó đứng kế cây
 Give for aunt{one /all PL /all PL} CL dog stand next CL tree
 ‘Give me one/all the dogs next to the tree.’

<table>
<thead>
<tr>
<th>Table 1. Noun phrase types used in the experiment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Condition</td>
</tr>
<tr>
<td>-----------</td>
</tr>
<tr>
<td>Experimental</td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>
| | PL-def (?) | những CL N | all the dogs (?)
| Control | SG-Indef ‘one’ | mót CL N | any single dog |
| | all + câc | tất cả các CL-N | all the dogs |
| | all + những | tất cả những CL-N | all the dogs |

The full set of prompts was generated by crossing these 6 noun phrase types with 4 animal types and 2 landmark types to produce 48 items. Each child was tested on 12 items (2 of each noun phrase type) plus 4 fillers.

Participants were randomly assigned to one of 6 different versions of the 12-item test, each with a different order. In all versions, control items were presented after experimental items to prevent children from developing a contrast strategy for interpreting the experimental items. In 3 of the 6 versions, experimental items were presented in blocks, with either the *những*-CL-N block first (version 1), the *các*-CL-N block first (version 2), or the CL-N block first (version 3), and items ordered randomly within each block. In the remaining 3 versions, each block contained a *những*-CL-N item, a *các*-CL-N item, and a CL-N item in a random order. No significant differences were found between versions; therefore, we collapse them when reporting the results.

7.3. Procedure

The task included three phases: (i) a pretest, in which children were asked to name the toys and landmarks and to demonstrate their understanding of the prepositional phrase *đứng kế* (‘standing next to’) and the overall setup by

5 If *những* is indefinite, subjects could pick out non-maximal sets. However, as we discussed in Lê and Schmitt (2016), despite what the literature has claimed before, there is a near-categorical preference for interpreting *những* nouns phrases as definite.
answering the question *Con gì dùng kết con gì?* (**What is next to what?**); (ii) the training, in which children responded to prompts using the numerals 2 through 4, and (iii) test and control items. The entire procedure lasted approximately 30 minutes in total. Adults were tested, either individually or in a group, using a pencil and paper version of the task without the pretest or training phase.

7.4. Results

Overall, adults performed as expected, producing 100% target responses in all control and test conditions. In the singular control condition (ex. *Give me one CL dog next to the tree*), which had multiple potential target responses, adults chose the singular definite response (closest single dog) for all trials. In the plural test condition with pluralizer *những*, whose definiteness status was unclear, adults chose the plural definite response (maximal set of dogs) for all trials. We present children’s results below, beginning with control items and then presenting responses to test items.

7.5. Control sentences

Table 2 gives the frequency and proportion of children’s responses in control conditions, grouped by number (singular vs. plural responses) and definiteness (closest/maximal vs. non-closest/non-maximal responses). Target responses are in shaded cells. Across all three conditions, children provided mostly target responses, showing that they understood the task. In the singular control condition, children showed a distinct preference for the singular definite response (closest animal) similarly to adults, something which should be taken into account when assessing children’s behavior in the singular experimental condition.

Table 2. Proportion (frequency) of response types in control conditions

<table>
<thead>
<tr>
<th>Condition</th>
<th>singular one-CL-N</th>
<th>maximal all-các-CL-N</th>
<th>maximal all-những-CL-N</th>
</tr>
</thead>
<tbody>
<tr>
<td>Singular</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Closest</td>
<td>87.93% (102)</td>
<td>7.76% (9)</td>
<td>9.48% (11)</td>
</tr>
<tr>
<td>Non-closest</td>
<td>11.21% (13)</td>
<td>4.31% (3)</td>
<td>0% (0)</td>
</tr>
<tr>
<td>Plural</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Maximal</td>
<td>0.86% (1)</td>
<td>81.90% (95)</td>
<td>84.48% (98)</td>
</tr>
<tr>
<td>Non-maximal</td>
<td>0% (0)</td>
<td>7.76% (9)</td>
<td>6.03% (7)</td>
</tr>
</tbody>
</table>

Figure 2 divides children’s responses by age group, collapsing across the two plural control conditions (all-các-CL-N and all-những-CL-N sequences). Even children in the youngest age group produced majority target responses.
Proportion of children’s response types, by age group, in singular control conditions (left) and plural control conditions (right). Responses include singular definite (black), singular indefinite (dark grey), plural indefinite (medium gray) and plural definite (light grey).

7.6. Experimental sentences
7.6.1. Overall results

Table 3 presents the frequency and proportion of children’s responses in the three experimental conditions. Like adults, children treated cãc-CL-N and nhũng-CL-N sequences similarly, with no significant differences in the distribution of responses (χ-squared = 0.39, df = 3, $p = 0.94$). Thus, we collapse across these conditions in all subsequent analyses.

Table 3. Proportion (frequency) of response types in experimental conditions

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Singular</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Closest</td>
<td>73.27% (85)</td>
<td>26.72% (31)</td>
<td>26.72% (31)</td>
</tr>
<tr>
<td>Non-closest</td>
<td>7.76% (9)</td>
<td>0.86% (1)</td>
<td>1.72% (2)</td>
</tr>
<tr>
<td>Plural</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Maximal</td>
<td>14.66% (17)</td>
<td>64.66% (75)</td>
<td>64.66% (75)</td>
</tr>
<tr>
<td>Non-maximal</td>
<td>4.31% (3)</td>
<td>7.76% (9)</td>
<td>6.90% (8)</td>
</tr>
</tbody>
</table>

Figure 3 divides children’s responses by age group, collapsing across the two plural conditions. In the singular definite condition (*Give me CL dog next to the tree*), children of all age groups produced a majority of target responses, choosing the closest dog to the tree. This is not surprising, given their preference.
for this response in the singular control trials. Interestingly, however, the second most common response—and therefore their most common error—was the maximal set of dogs, which is correct with respect to definiteness but incorrect with respect to number.

![Figure 3](image.png)

Figure 3. Proportion of children’s response types, by age group, in singular (left) and plural experimental conditions (right). Responses include singular definite (black), singular indefinite (dark grey), plural indefinite (medium gray) and plural definite (light grey).

Turning to the plural definite conditions (ex. *Give me* cáč/nhutherland CL dog next to the tree), we find a similar pattern. Children 4 and older produced a majority of target answers, i.e., the maximal set of dogs. And just as in the singular condition, their most common error was a definite response of the wrong number, namely the closest single dog. Children age 3 were evenly split between number and definiteness errors.

We now turn to children’s comprehension of number and then of definiteness.

7.6.2. Number

To address the question of whether children distinguish singular from plural definite noun phrases, we compared the proportion of plural responses provided in singular (CL-N) test conditions relative to plural (cáč/nhutherland-CL-N) test conditions, collapsing across definite and indefinite responses. Two-tailed t-tests revealed significantly more plural responses in plural relative to singular conditions, for every age group (all \(p < 0.05 \)).

Despite distinguishing between singular and plural, however, 3- and 5-year-olds produce a surprisingly low rate of plural responses in the plural conditions (59% and 55%, respectively), at least compared with what has been reported on children’s number comprehension in other languages. Indeed, while Munn et al.
(2006) report 80-95% target number responses in this task among English- and Spanish-acquiring children ages 5 and younger, the Vietnamese-acquiring children did not reach that same level of number accuracy until age 6. (See Table 4).

Table 4. Proportion target number in experimental conditions of the Munn et al.’s (2006) task and our task (collapsing across definite and indefinite responses)

<table>
<thead>
<tr>
<th>Language and age group</th>
<th>Sg. Def.</th>
<th>Pl. Def.</th>
</tr>
</thead>
<tbody>
<tr>
<td>English (N=15) 3;0-5;5</td>
<td>83.8</td>
<td>81.3</td>
</tr>
<tr>
<td>Spanish (N=20) 3;2-4;11</td>
<td>90</td>
<td>95</td>
</tr>
<tr>
<td>Vietnamese (N=11) 3;2-3;11</td>
<td>77</td>
<td>59</td>
</tr>
<tr>
<td>Vietnamese (N=12) 4;0-4;10</td>
<td>71</td>
<td>81</td>
</tr>
<tr>
<td>Vietnamese (N=15) 5;0-5;11</td>
<td>87</td>
<td>55</td>
</tr>
<tr>
<td>Vietnamese (N=13) 6;0-6;11</td>
<td>92</td>
<td>81</td>
</tr>
<tr>
<td>Vietnamese (N=7) 7;0-7;7</td>
<td>71</td>
<td>96</td>
</tr>
</tbody>
</table>

7.6.3. Definiteness

Turning to the second research question, we assessed Vietnamese-acquiring children’s comprehension of definiteness by examining the proportion of definite responses they produced in the test conditions. These proportions are reported in Figure 4, with plural definite responses in grey and singular definite responses in black. Children showed a strong tendency toward definite responses—even if these responses did not always match the number of the noun phrase in question. Even the 3-year-olds produced a majority of definite responses (86.3% in the singular condition and 65.9% in plural conditions).

Figure 4. Proportion plural definite responses (grey) and singular definite responses (black) in experimental sentences.
To check for developmental trends in the rate of definite responses we ran a two-way ANOVA with condition (singular, plural) as a within-subjects factor and age group (3, 4, 5, 6, 7) as a between-subjects factor. There was a significant effect of age group ($F = 8.049, p < 0.001$), reflecting an overall increase in definite responses over time, as well as a significant interaction between condition and age group ($F = 4.219, p = 0.0024$). Sub-t-tests between age groups, using Bonferroni-adjusted alpha levels of 0.005 per test (0.05/10) revealed that, while the rate of definite responses produced in singular conditions remained equally high across age groups (all $t > -0.952$, all $p > 0.346$), 3-year-olds produced fewer definite responses in the plural conditions, relative to other age groups (all $t < -3.245$, all $p < 0.002$). In sum, the overall rate of definite responses remains high over the course of development, with only 3-year-olds producing fewer definite responses than the rest, and then only in the plural conditions.

What does change over the course of development instead appears to be the proportion of plural definite responses (in grey) relative to singular definite responses (in black). In the plural conditions, the ratio of plural definite responses increases from 41.38% among 3-year-olds to 100% among 7-year-olds, as children gradually learn that c activités CL-N and những CL-N sequences encode not only definiteness but also plurality. In the singular conditions, the ratio of plural definite responses remains low throughout, between 7.69% (5-year-olds) and 30.77% (7-year-olds), as even the youngest children seem to know that CL-N sequences encode singularity in addition to definiteness.

8. Discussion

The acquisition of definite noun phrases appears to take a very different route in Vietnamese than it does in English and Spanish. With respect to number comprehension, Vietnamese children do distinguish between singular and plural noun phrases, but their acquisition of plural-marked phrases (các CL-N and những CL-N) lags behind that of singular ones (CL-N). And significantly, their ability to associate noun phrases to sets of the correct cardinality lags behind that of English- and Spanish-acquiring children completing the same task.

With respect to definiteness, on the other hand, Vietnamese-acquiring children appear to surpass their American and Mexican peers. All ages tested showed a strong tendency to associate definite noun phrases with unique sets, whether the closest animal (unique singleton set) or the maximal set of animals (unique plural set) — even if that set did not always satisfy the number features of the noun phrase in question.

In sum, Vietnamese children’s behavior is explained by neither the ‘No Maximality’ hypothesis nor the ‘Domain restriction’ hypothesis because they simply did not produce many definiteness errors. This raises the question of what explains the difference in behavior across languages. That is, why do Vietnamese children succeed with definiteness and commit number errors, while
Spanish- and English-acquiring children succeed with number and commit definiteness errors, at least in the singular condition?

One possibility is that the semantics of the noun phrase restrictor might differ in Vietnamese. Maybe the phrase **đứng kế cây**, which we have translated as *next to the tree*, really means something more like *adjacent to the tree*. However, we reject this explanation based on semantic truth value judgments from native speakers, who answer yes to sentences like (6), even in scenarios where the dog with the bow is not the one adjacent to the tree.

(6) *Con chó đeo nơ có đứng kế cây không?*

CL dog wear bow yes stand next CL tree no

‘Is the dog with the bow next to the tree?’

Instead, we would like to suggest that what causes the discrepancy in performance between speakers of the different languages is the information that children choose to prioritize. Specifically, we propose that when the task becomes demanding, all groups of children have difficulty simultaneously coordinating information from number and from definiteness, but, while Vietnamese-acquiring children prioritize definiteness, resulting in number errors, Spanish- and English-acquiring children prioritize number, resulting in definiteness errors. This difference in behavior could have something to do with the fact that number is obligatorily marked on Spanish and English nouns, while in Vietnamese, overt number marking only exists in the context of definite noun phrases.

If we assume that Spanish-and English-speaking children prioritize number over definiteness it could be that their adult-like behavior in the plural conditions may simply amount to a default interpretation of plural as maximal, since the maximal set is the easiest plural set to access. More studies will determine whether this reinterpretation of the plural definite results in English and Spanish has some merit. In either case, this study highlights the importance of cross-linguistic research in contributing to our understanding of how children acquire semantic concepts. Specifically, what our results suggest is that when languages encode the same semantic primitives in different ways, this has consequences for how children interpret those semantic primitives.

References

Cao, Xuan Hao. 1998. Mô về vấn đề ngữ âm- ngữ nghĩa - ngữ pháp trong tiếng Việt [Some issues on phonetics, semantics, and grammar in Vietnamese]. Hanoi: Education Publisher.

