How Turkish-Speaking Children Interpret Pre-verbal sadece (‘only’): The Role of Prosody and Pragmatics

Simge Topaloğlu and Mine Nakipoğlu

1. Introduction

Previous research on preschoolers’ comprehension of the restrictive focus particle only has shown that young children often have difficulty computing the scope of only. Of particular note was the subject-object asymmetry that consistently appeared in these comprehension studies, whereby it was observed that children often misinterpreted pre-subject only as if it took scope over the VP or the object NP. Moreover this error pattern was detected in a number of typologically different languages (English: Crain et al. 1994, Paterson et al. 2003, Kim 2011; German: Müller 2010, Mandarin: Zhou & Crain 2010). There have been different proposals in the literature to account for this object-focus bias. Whereas some studies adduced arguments in favor of a syntactic account, claiming that children’s scope misassignment errors stemmed from a non-adult-like syntactic representation for only (Zhou & Crain 2010), some studies emphasized the role of working memory limitations (Paterson et al. 2003) or pragmatic factors (Müller 2010, Kim 2011, Hackl et al. 2015).

In a previous study, we aimed to investigate how Turkish-speaking children interpret sentences with the focus particle sadece (‘only’) using a Truth Value Judgment Task and our first experiment demonstrated that Turkish children, too, overwhelmingly misinterpret sentences with pre-subject sadece, associating the focus particle with the object NP; whereas they can comprehend pre-object sadece sentences in an adult-like fashion. Having confirmed the presence of an object-focus bias in Turkish, we hypothesized that this bias might originate from the unmarkedness of constructions in which topics precede foci (Chafe, 1970, 1987; Prince, 1981; Lambrecht 1994). As topics typically precede foci, and as subject NPs precede object NPs in canonical word orders in the languages in which the acquisition of only has been investigated, there emerges an overlap between subjects/topics and objects/foci. We argued that it may therefore be the case that young children are sensitive to the unmarkedness of constructions where subjects are topics and predicates are foci and this may lead them to

* Simge Topaloğlu, Department of Linguistics, Bogazici University, simge.topaloglu@boun.edu.tr, Mine Nakipoğlu, Department of Linguistics, Bogazici University, nakipogl@boun.edu.tr. We are grateful to all the child participants and their parents and teachers. This work was partially supported by Boğaziçi University Research Fund Grant #7949 to Mine Nakipoğlu.

develop a bias whereby they always associate the focus particle *only* with the VP or the object NP, which they see as the prototypical focus of the sentence, in a wholesale manner.

To test this hypothesis, we presented preschoolers with pre-subject *sadece* sentences and we performed some syntactic/pragmatic manipulations on the items in order to override a possible object-focus bias that is attributable to an overgeneralization based on the unmarkedness of the topic-focus ordering. The syntactic manipulation we employed exploited the scrambling property of Turkish to create sentences in the O – *sadece* S – V order, as a result of which the subject NP was now the last NP and in the preverbal focus position (Erguvanlı, 1984; Herring & Paolillo, 1995). Our pragmatic manipulation involved asking children ‘who-questions’ such as ‘Who ate the fish?’ and ‘Who ate the apple?’ before requiring them to judge the truth value of a sentence such as ‘Only the cat ate the fish.’ We hoped that rendering the subject NP the last NP of the sentence via scrambling and focalizing the subjects by asking questions about them would disrupt the correspondence of subjects to topics and objects to foci, enabling young children to correctly associate *sadece* with the subject NP. In accordance with our expectations, we observed that both of these manipulations have dramatically increased the rate of correct subject-focus readings of preschoolers (Topaloğlu, 2015; Topaloğlu & Nakipoğlu, under review). These findings lent support to our hypothesis that the scope misassignment errors may be related to the unmarkedness of the information-structural topic-focus sequence.

But there is more to *only* than the subject-object asymmetry mentioned above. First of all, the scope assignment of focus particles such as *only* closely interacts with prosody. In this regard, Turkish has the interesting property that *sadece* can associate with the element either preceding or following it, depending on the prosodic structure. To illustrate, in sentence (1a) below, stress is on the verb *taşımiş* (‘carried’) and *sadece* forms a prosodic phrase (and hence a focus phrase) with the verb, leading to an interpretation where the verb is under restrictive focus. Conversely, when the stress falls on the object NP *kutuyu* (‘the box’), and *sadece* forms a prosodic phrase (and a focus phrase) with the object NP, object-focus will be obtained.

(1) a. Adam kutu-yu $f_{[sadece TAŞI-MİŞ.]}$
 man box-ACC only carry-PAST.3sg
 ‘The man $f_{[only carried]}$ the box.’

 b. Adam $f_{[KUTU-YU sadece]}$ taşi-miş.
 ‘The man carried $f_{[only the box]}$’

As seen in the above examples, speakers need to be able to attend to prosodic cues such as stress and pause in order to demarcate the prosodic phrases and assign the scope of *sadece* correctly. It has previously been claimed in the literature that young children are unable to utilize such prosodic cues for focus set computation (Gualmini et al. 2003; Reinhart 2004), and therefore
whether Turkish-speaking children can interpret sentences as in (1a&b) correctly becomes an intriguing question to pursue. This ushers us in to our first experiment in which we sought to answer this question.

2. Experiment 1
2.1. Materials

To investigate whether and how Turkish-speaking preschoolers use prosody to associate sadece with the object vs. the verb, we designed a Truth-Value-Judgment-Task (TVJT) and created 12 test sentences. 6 of these sentences had verb-focus as in (1a) and 6 had object-focus as in (1b). Half of the test sentences were factually true and the other half were factually false, the truth values were counterbalanced across object-focus and verb-focus sentences and all test sentences and pictures were prepared in such a way that object-focus and verb-focus readings would yield opposite truth value judgments. In addition 6 filler items were created where the child was not required to give a truth value judgment, but instead described the pictures shown to him/her. A sample test item is provided below.¹

Sample Test Item

![Sample Test Item](image)

Figure 1. A sample picture series from Experiment 1

Mini story:

1) This is the cat’s kitchen. The cat has an apple and an orange on the table. She needs to wash and peel them if she wants to eat them.

2) The cat washes the apple.

3) Then the cat washes the orange.

4) The cat decides to eat the apple, so she peels it.

¹ In the actual test every sentence appeared in exactly one condition (object-focus or verb-focus). In order to save space, here we present both sentences that the story allows us to construct for these two conditions.
Test sentence #1 (verb-focus): Kedi portakal-ı F[sadece YIKA-MİŞ.]
Cat orange-ACC only wash-PAST.3sg
‘The cat F[only washed] the orange.’
Target response: TRUE, because the cat did not peel the orange.
Scope misassignment: FALSE, because the cat also washed the apple.

Test sentence #2 (object-focus): Kedi F[PORTAKAL-ı sadece] yıka-mış.
‘The cat washed F[only the orange.]’
Target response: FALSE, because the cat also washed the apple.
Scope misassignment: TRUE, because the cat did not peel the orange.

2.2. Procedure

This experiment was administered to the children individually in a quiet room in their kindergartens, by showing them the test pictures as Microsoft Office PowerPoint Slides on a computer screen. At the beginning of the test, the children met Kermit who appeared in a video on the computer screen. They were told that they would be playing a game with Kermit. According to the rules of the game, Kermit and the children would look at the pictures and listen to the stories told by the experimenter, then Kermit would make a statement about the story (our pre-recorded test sentences that were spoken by an adult female speaker with linguistics training) that could be true or false. Children were instructed to reward Kermit by throwing a marble into his box when his statement was true and to withhold reward when his statement was false. If children judged Kermit’s statement to be false, they were asked to justify their response. Before the test started, children were familiarized with the procedure with 2 practice sentences that did not have sadece. One practice sentence was true and the other one was false according to the stories. Children who failed in the practice items were not allowed to proceed with the test items. This experiment takes about 20 minutes to complete.

2.3. Predictions

If children are truly unable to utilize prosody for focus set computation as has been claimed in the literature, there are two possible outcomes: (i) as correct scope assignment for sadece solely depends on prosodic cues in the test sentences used here, children might give random responses, (ii) if the object-focus bias we detected in our previous experiments and attributed to the unmarkedness of the information-structural topic-focus sequence is at work, then we should expect children to associate sadece with the object NP in both the object-focus and the verb-focus conditions. If they are able to use prosody for determining the focus set, however, there are two possible outcomes again:
(i) if children do not exhibit an object-focus bias, or if prosodic cues are somehow able to override this bias, they must interpret the sentences in an adult-like fashion, (ii) if the bias persists, they should interpret all sentences as if they had object-focus.

We should note that this experiment can answer the question of whether or not children can use prosody for focus set computation only if their responses are not influenced by an object-focus bias, as the outcome is the same for either case if the object-focus bias operates. If this bias is not operative here, then random responses will indicate an inability to use prosody for focus set computation, whereas adult-like responses will point to an ability to do so.

2.4. Participants

The participants in Experiment 1 were 23 monolingual Turkish-speaking children (10 girls, age range: 4;04–6;03, mean 5;06). 4 additional children were removed, as they failed in the practice items. All children were recruited from kindergartens located in Istanbul.

2.5. Results and Discussion

Experiment 1 showed that preschoolers committed scope misassignment errors in this syntactic frame as well. Children misassigned the scope of sadece in the verb-focus sentences to the object NP 63.8% of the time, while the scope misassignment error rate in the reverse direction (i.e. the focus particle in the object-focus condition is incorrectly associated with the verb) was only 15.2%. A paired-samples t-test comparing the difference in the correct response rates for object-focus sentences \((M=4.87, SD=1.01) \) and verb-focus sentences \((M=1.91, SD=1.35) \) revealed the difference to be statistically significant, \(t(22)=8.518, p<.001 \). These results are summarized in the table below.3

2 The means show the mean number of correct responses for the 6 test sentences in each condition.
3 Errorful responses that could not be classified as scope misassignment errors were coded as ‘other.’ These errors usually stem from a memory failure, for example a child may reject test sentence #1 saying that the cat did not wash the orange at all, etc. Table 1 shows the percentages of object-focus and verb-focus readings in adult-true and adult-false test sentences. The total score is the arithmetic average of the two.
Table 1. Object-focus and verb-focus interpretations in Experiment 1 (in %) (AT: adult-true, AF: adult-false)

<table>
<thead>
<tr>
<th></th>
<th>Object-focus</th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>AT</td>
<td>AF</td>
<td>Total</td>
<td>AT</td>
<td>AF</td>
<td>Total</td>
</tr>
<tr>
<td>[sadece VERB]</td>
<td>78.3</td>
<td>49.3</td>
<td>63.8</td>
<td>15.9</td>
<td>47.8</td>
<td>31.9</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>5.8</td>
<td>2.9</td>
<td>4.3</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Object-focus</th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>AT</td>
<td>AF</td>
<td>Total</td>
<td>AT</td>
<td>AF</td>
<td>Total</td>
</tr>
<tr>
<td>[OBJECT sadece]</td>
<td>88.4</td>
<td>73.9</td>
<td>81.2</td>
<td>7.2</td>
<td>23.2</td>
<td>15.2</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>4.3</td>
<td>2.9</td>
<td>3.6</td>
</tr>
</tbody>
</table>

In short, the results of Experiment 1 are compatible with our hypothesis that young children have a pragmatic/information-structural bias to consider the object NP (which often coincides with the last NP) to be the default focus of the sentence and associate it with the focus particle sadece, as they rarely exhibit verb-focus interpretation in either condition. Moreover, in the verb-focus condition, the object-focus readings occur despite the salient prosodic cues such as stress and pause that clearly signal that sadece forms a focus phrase with and takes scope over the verb. But does that mean that children are essentially unable to use prosodic cues for determining focus sets, or do these errors occur because children’s pragmatic object-focus bias prompts them to converge on a default object-focus reading, overruling what the prosody dictates? As we anticipated in Section 2.3, if a powerful object-focus bias is at work, Experiment 1 cannot adjudicate whether children can use prosody for delineating focus sets. To answer this question, we should eliminate the effects of the object-focus bias and this takes us to Experiment 2.

3. Experiment 2
3.1. Materials

For this experiment we have prepared two sets of test sentences with pre-verbal sadece. The first set was the transitive set and was comprised of 4 adult-true and 4 adult-false sentences. As in Experiment 1, the prosodic cues available dissociated between object-focus and verb-focus. However, we have taken care to ‘improve’ the transitive sentences in this experiment, as we have observed some minor deficiencies in our test items in the previous experiment. Below we give a sample test sentence from the transitive set of Experiment 2 and explain in what ways it constitutes a more polished-up version of what we had in Experiment 1.
Sample Test Item

1) The cat has a refrigerator and a washing machine, but she does not like them. Because they are colorless and boring. The cat wants to change this by painting them and by decorating them with stickers.

2) The cat paints the refrigerator.

3) She has painted the refrigerator successfully.

4) Now she wants to paint the washing machine, but she accidentally knocks over the paint can and spills the paint on the floor.

5) Then she decorates the refrigerator with smiley stickers.

6) And finally she decorates the washing machine with smiley stickers.

Test sentence #1 (verb-focus):
Kedi buzdolabı-nı F[sadece BOYA-YABİL-MİŞ.]
‘The cat F[could only paint] the refrigerator.’

Target response: FALSE, because the cat could also decorate the refrigerator.
Scope misassignment: TRUE, because the cat could not paint the washing machine.

Test sentence #2 (object-focus):
‘The cat could paint F[only the refrigerator.]’

Target response: TRUE, because the cat could not paint the washing machine.
Scope misassignment: FALSE, because the cat could also decorate the refrigerator.

As was the case in Experiment 1, in the actual test every sentence appeared in exactly one condition (object-focus or verb-focus).
As mentioned above, we took care to optimize the felicity of our test items by introducing three basic changes. (i) In Experiment 1, the action that one of the objects failed to undergo was not explicitly shown, e.g. we can see that the cat peels the apple, but we do not see that she does not peel the orange. Thinking that the absence of that action may not have been expressed saliently, we decided to use pictures that show the absence of that action. In the story sequence given for the sample transitive item from Experiment 2, for instance, it is shown that the cat cannot paint the washing machine, since she has spilled the paint. (ii) Since the agent did not voluntarily decide not to perform an action, but was prevented from doing so by an obstacle (here, spilling the paint), we attached the abilitative morpheme {-yAbil} to the verbs, to make sentences felicitous in these contexts. (iii) In Experiment 1, children had viewed the picture sequence and then given their judgment with no pictures on the screen. We thought that it would be easier for the children to give correct judgments if they could view the story while doing so, as they could ‘peek’ and recall how the agent acted on each object. Therefore we created summary pictures that were collages of all the pictures organized in their temporal sequence, and this summary picture remained on screen while the children judged Kermit’s statement.

With these improvements, we expected to obtain better results and eliminate any errors that might be attributable to some possible shortcomings in the test items in Experiment 1. In addition to the set of transitive sentences, we had a set of intransitive sentences in Experiment 2. This set was comprised of 2 adult-true and 2 adult-false sentences. In the intransitive sentences, too, the focus particle sadece was placed in the immediately preverbal position, and now the prosodic cues dissociated between subject-focus and verb-focus. This intransitive set constitutes the most crucial part of Experiment 2, since it is through the responses that our participants will give to these items that we will be able to answer the question of whether or not young children can use prosody for focus set computation. As there are no object NPs in the intransitive sentences, a pragmatic/information-structural bias that causes children to treat object NPs/last NPs as default foci cannot be operative here. Hence if children can use prosody for determining focus sets, they are expected to interpret the intransitive sentences in an adult-like manner, if not, they are expected to perform at chance-level. A sample test item from the intransitive set is given below.

Sample Test Item

![Sample Test Item](image)

Figure 3. A sample picture series from Experiment 2 (intransitive set)
Mini story:

1) The cat and the mouse want to play in the park.
2) The cat and the mouse are jumping rope.
3) Then the cat skates, but the skates are too big for the little mouse.

Test sentence #1 (verb-focus): Fare sadece İP ATLA-YABİL-MİŞ.
Mouse only rope jump-ABIL-PAST.3sg.
‘The mouse could only rope-jump.’
Target response: TRUE, because the mouse could not skate.
Scope misassignment: FALSE, because the cat also jumped rope.

Test sentence #2 (subject-focus): Fare sadece ip atla-yabil-miş.
‘Only the mouse could rope-jump.’
Target response: FALSE, because the cat also jumped rope.
Scope misassignment: TRUE, because the mouse could not skate.

In addition to these test sentences, Experiment 2 also had 6 fillers. The fillers were similar in kind to the fillers in Experiment 1.

3.2. Procedure

The procedure is the same as in Experiment 1. This experiment, too, takes about 20 minutes to complete.

3.3. Predictions

As remarked above, the results of Experiment 1 have been ambiguous with respect to answering the question of whether preschoolers can utilize prosody for focus set computation. The object-focus bias we detected in our previous studies was at work in the case of preverbal only as well, leading children to adopt across-the-board object-focus readings. Thus even if children were able to use prosody to determine the scope of a focus particle, it is possible that this ability was obscured by the effect of this object-focus bias. If that is the case, then the intransitive sentences in Experiment 2 will settle this question. If children can use prosodic cues to determine the associate of only, they are expected to give adult-like responses, if not, they will exhibit a chance-level performance. The transitive sentences, on the other hand, will serve as a touchstone against which we can compare children’s performance in the intransitive set. Since we have also improved the test items to make them more felicitous, we believe that the results obtained from this set will give an even more accurate picture of how children interpret such sentences.

5 As Turkish allows noun incorporation when the nouns are non-referential, the phrase ip atlamak (‘to rope-jump’) qualifies as an intransitive verb here, similar to English verbs such as to babysit, to bartend, etc.
3.4. Participants

The participants in Experiment 2 were 30 monolingual Turkish-speaking children (16 girls, age range: 4;04 – 6;05, mean: 5;08). 5 additional children were removed, as they failed in the practice items. All children were recruited from kindergartens in Istanbul. In addition, 15 undergraduate students from Boğaziçi University were tested as a control group (8 women, mean age: >20).

3.5. Results and Discussion

Experiment 2 shows that children’s scope misassignment errors persist in the [sadece VERBTRAN] sentences of the transitive set, with a correct verb-focus reading rate of 52.5% and an incorrect object-focus reading rate of 33.3%. It is notable that the rate of correct verb-focus readings has increased to 52.5%, compared to 31.9% in Experiment 1, presumably reflecting the effect of the improvements we introduced to render the test items more felicitous. Nevertheless there was a significant difference between the correct response rates in the [sadece VERBTRAN] condition \((M=2.1, SD=0.18) \) and the [OBJECT sadece] condition \((M=3.1, SD=0.17) \), \(t(29)=3.873, p<.01 \). The correct response rate of the adults was 100% in both conditions of the transitive set, and hence their performance significantly differed from that of the children in both the [sadece VERBTRAN] condition \((U=15, p<.001) \) and in the [OBJECT sadece] condition \((U=97.5, p<.001) \). The results of the transitive set are summarized in the table below.

Table 2a. Object-focus and verb-focus interpretations in Experiment 2 (in %) (AT: adult-true, AF: adult-false; G1: children, G2: adults)

<table>
<thead>
<tr>
<th></th>
<th>Object-focus</th>
<th>Verb-focus</th>
<th>Other</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>AT</td>
<td>AF</td>
<td>Total</td>
</tr>
<tr>
<td>sadece VERBTRAN</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>G1</td>
<td>16.7</td>
<td>50</td>
<td>33.3</td>
</tr>
<tr>
<td>G2</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>OBJECT sadece</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>G1</td>
<td>95</td>
<td>60</td>
<td>77.5</td>
</tr>
<tr>
<td>G2</td>
<td>100</td>
<td>100</td>
<td>100</td>
</tr>
</tbody>
</table>

\(^6\) The means show the mean number of correct responses for the 4 test sentences in the [sadece VERBTRAN] and [OBJECT sadece] conditions of the transitive set.
Given the prevalence of the object-focus bias in preschoolers’ comprehension of *sadece*, these results are not surprising. However, an interesting outcome emerges when we look at children’s performance in the intransitive set. Children’s responses to the test sentences in this set clearly indicate that they *can* use prosodic cues for focus set computation, as they were able to access verb-focus in the [sadece VERB\textsubscript{INTRAN}] condition 95% of the time and they could access subject-focus in the [SUBJECT sadece] condition 88.3% of the time. A paired-samples t-test has shown that children performed in both the [sadece VERB\textsubscript{INTRAN}] condition ($M=1.9$, $SD=0.06$) and in the [SUBJECT sadece] condition ($M=1.77$, $SD=0.08$) equally well, with no statistically significant difference between the two, $t(29)=1.278$, $p>.10$. The same holds for the adult control group. Their correct response rates in the [sadece VERB\textsubscript{INTRAN}] condition ($M=1.93$, $SD=0.07$) and in the [SUBJECT sadece] condition ($M=1.80$, $SD=0.11$) did not significantly differ from each other either, $t(14)=1.000$, $p>.10$. Moreover there was no statistically significant difference between the correct response rates of the adults and the correct response rates of the children in the [sadece VERB\textsubscript{INTRAN}] condition ($U=217.5$, $p=1$) or in the [SUBJECT sadece] condition ($U=217.5$, $p=1$). The results obtained in the intransitive set of Experiment 2 are provided in the table below.

Table 2b. Subject-focus and verb-focus interpretations in Experiment 2 (in %) (AT: adult-true, AF: adult-false; G1: children, G2: adults)

<table>
<thead>
<tr>
<th></th>
<th>Subject-focus</th>
<th>Verb-focus</th>
<th>Other</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>AT</td>
<td>AF</td>
<td>Total</td>
</tr>
<tr>
<td>[sadece VERB\textsubscript{INTRAN}]</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>G1</td>
<td>3.3</td>
<td>6.7</td>
<td>5</td>
</tr>
<tr>
<td>G2</td>
<td>6.7</td>
<td>0</td>
<td>3.4</td>
</tr>
<tr>
<td>[SUBJECT sadece]</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>G1</td>
<td>100</td>
<td>76.7</td>
<td>88.3</td>
</tr>
<tr>
<td>G2</td>
<td>100</td>
<td>80</td>
<td>90</td>
</tr>
</tbody>
</table>

7 The means show the mean number of correct responses for the 2 test sentences in the [sadece VERB\textsubscript{INTRAN}] and [SUBJECT sadece] conditions of the intransitive set.
So we can easily see that there is nothing particularly difficult about comprehending either subject-focus or verb-focus for children once objects are out of the picture, and these findings, combined with the findings of our previous study, further consolidate the hypothesis that preschoolers’ scope misassignment errors must be arising from a pragmatic/information-structural bias that causes them to treat the object NP as the default focus, since objects usually follow subjects and are foci, conforming to the unmarked information-structural topic-focus sequence. Furthermore, as the subject-focus/verb-focus distinction in the intransitive set solely depends upon prosodic cues such as stress and pause that signal the focus phrase; children’s adult-like performance in this set shows us that they DO attend to prosodic cues and they CAN utilize those cues for focus set computation (contra Gualmini et al. 2003, Reinhart 2004).

4. General Discussion and Avenues for Future Research

Departing from the subject-object dichotomy that has received considerable attention in the language acquisition studies investigating the comprehension of focus particles, this study aimed to provide insights into how Turkish-speaking children interpret sadece (‘only’) when it is in the preverbal position. We also sought to understand whether and to what degree young children can utilize prosodic cues to dissociate between object-focus vs. verb-focus or subject-focus vs. verb-focus solely relying on the prosodic cues available. The results obtained in Experiment 1 and in the transitive set of Experiment 2 demonstrated that preschoolers have a predominant tendency to assign object-focus interpretations to transitive sentences, even though the prosody signals that the sentences have verb-focus. This finding has confirmed our earlier conclusion that children have a pragmatic bias leading them to treat object NPs as default foci. The data supplied by transitive sentences, however, left us in the dark as to whether children are able to use prosody for focus set computation. By designing the intransitive set of Experiment 2 we aimed to tackle this question. In line with our expectations, we have observed that children’s scope misassignment errors disappeared once the objects had been removed from the sentences. In the absence of objects, preschoolers could successfully use prosodic cues to correctly identify subjects or verbs as the focus of the sentence.

In conclusion, even preschoolers are sensitive to prosody and they can use it for focus set computation when their judgment is not obscured by the pragmatic object-focus bias. But there are still questions waiting to be answered with regard to the source of this object-focus bias. Two pragmatic proposals attempting to account for this have put forward that (i) children might be treating the object NPs as default foci (Müller et al. 2010) or (ii) children might be treating the last NP of the sentence as the default focus (Kim 2011). Since objects usually happen to be the last NP of the sentence as well, it is often not
possible to disentangle the predictions of the two proposals. These two proposals are naturally interconnected, since the former proposal derives from the unmarkedness of the predicate-focus construction (Lambrecht 1994) and the latter can be related to the fact that the predicate-focus construction happens to be unmarked precisely because the most natural way of packaging information in language is to put given info (topic) before new info (focus) and as the subjects precede objects (or VPs/predicates) in the canonical word order of around 90% of world’s languages, objects overlap with the last NP, and hence, with the focus of the sentence. Thus the roots of the object-focus bias would be traced to a last NP bias.

To dissociate between last NPs and object NPs, our ongoing research looks at whether and how preschoolers interpret ditransitive sentences with the focus particle sadece. Due to the scrambling property of Turkish it is possible to construct sentences in which either the direct object or the indirect object can be in the immediately preverbal focus position. In the latter case, we achieve a clear distinction between the last NP and the direct object NP, so we hope that the findings of our current study will shed light on this discussion. This study also has a section that investigates children’s comprehension of pre-subject sadece in sentences with SVO word order, where the object is the last NP, but has been scrambled to the postverbal position which is reserved for backgrounded/defocused material in Turkish (Göksel 1998, Göksel & Özsoy 2000). Owing to this property of Turkish, postverbal constituents cannot be stressed either. Our hypothesis is that if children have a last NP bias and if this last NP bias is a blind process resting on a kind of recency effect as a result of which the most recent NP is taken to be the focus, then they must misinterpret these sentences as having object-focus. If there is a last NP bias but it is not a mere recency effect and is more sophisticated in the sense that it involves the NP that is located in the most recent position that can host focused material – which is the immediately preverbal position in Turkish – children must be able to access subject-focus in these sentences. We hope that our ongoing study will provide insights into whether and to what extent Turkish-speaking preschoolers attend to these information-structural properties of word order in Turkish.

References

8 The findings of our earlier study in which we observed that children could access subject focus in sentences with OSV word order are also ambiguous in this regard. If children have a bias to label the object NP as the default focus, topicalizing the object by scrambling it to the sentence-initial position may have reduced that bias. If, however, children have a bias to label the last NP as the default focus, then we may have elicited correct responses because that bias guided children towards a subject-focus reading, as the subject NP was the last NP in the OSV sentences.

Topaloğlu, Simge & Nakipoğlu, Mine (2016). Turkish-speaking Preschoolers’ Comprehension of Sentences with the Focus Particle Sadece (Only), Manuscript submitted for publication.
