1. Introduction

For decades, researchers have attempted to determine whether language development of children with SLI is delayed or deviant (for an overview see Leonard, 2014). This question has been addressed by comparing children with SLI to younger language-matched children to determine similarities/differences in their linguistic profile. The current study offers a novel approach, comparing bilingual children with SLI and unbalanced bilinguals with typical language development (TLD) of the same chronological age in their weaker language. The potential contribution of the present study is two-fold. First, it contributes to the continuing delay-versus-deviant debate by comparing linguistic profiles of bilingual children with SLI to those with TLD matched for language, age, and IQ. Second, it helps fill the gap created by “the weak interest in the weaker language” of bilinguals (Bernardini, 2016).

1.1. How do Children with SLI Compare to Younger Language-Matched Controls

SLI is a primary deficit in language development in the absence of documented neurological damage, hearing deficits, severe environmental deprivation, or mental retardation (Leonard, 2014; Tomblin et al., 1997). There is no conformity as to whether language abilities of children with SLI show delay or deviance. Delay suggests a typical pattern of acquisition, while deviance stands for disordered/atypical trajectory of language development. The delay hypothesis is supported by the findings that children with SLI have a late start, their language development is protracted, and the error patterns observed in children SLI are typical of younger children. Rice, Wexler, and Cleave (1995), for example, suggested that the acquisition of verbal morphology by monolingual children with SLI and younger children with TLD does not fundamentally differ. The opposing view, the deviance hypothesis, has been supported by studies showing that...
children with SLI make errors that are not observed in younger children with TLD. For example, children with SLI have been shown to produce more bare stems compared to younger language-matched children in contexts which require inflected forms (e.g., Bishop, 2014). Moreover, it has been shown that language deficit in children with SLI may persist into adolescence (e.g., Conti-Ramsden, St Clair, Pickles, & Durkin, 2012), which would argue against the delay hypothesis or at least suggest that the initial delay becomes, in the long run, a deviance.

Reliable screening measures for diagnosing SLI among English speaking monolingual children include nonword repetition (NWR) and sentence repetition (SRep) tasks (e.g., Conti-Ramsden, Botting & Faragher, 2001). It has also been demonstrated that repetition tasks can accurately tease apart children with and without SLI matched for age in a variety of other languages in monolingual and bilingual children (for an overview see Armon-Lotem & Meir, 2016). The performance on repetition tasks of monolingual children with SLI compared to language-matched children with TLD (matched by the mean length of utterance, vocabulary, grammar, general language skills) can be used in order to contribute to the delay-versus-deviant debate. Studies demonstrating similar performance in children with SLI and younger language-matched controls support the delay hypothesis. Whereas, quantitative and qualitative differences between children with SLI and younger language-matched controls could point at deviant language profiles in children with SLI.

There is a large body of literature comparing children with SLI to younger language-matched children on their performance with NWR. There is some evidence that children with SLI and younger language-matched controls (matched on receptive vocabulary) do not differ (e.g., findings for Dutch by Rispens & Baker, 2012). Conversely, numerous studies demonstrated that children with SLI show lower accuracy on NWR tasks compared to younger language-matched children with TLD. Such findings could be taken as evidence for deviance rather than delay. Differences between children with SLI and younger language-matched controls have been demonstrated for a number of languages including English (Briscoe, Bishop, & Frazier Norbury, 2001; Horohov & Oetting, 2004; Marshall, Harris, & van der Lely, 2003; Montgomery, 2004), Italian (Dispaldro, Leonard, & Deevy, 2013), French (Leclercq, Maillart, & Majerus, 2013), Slovak (Kapalková, Polišenská, & Vicenová, 2013), and Turkish (Topbas, Kaçar-Kütükçü, & Kopkalli-Yavuz, 2014). Moreover, in addition to quantitative differences between children with SLI and language-matched controls, Marshall et al. (2003) reported specific error profiles for children with SLI. Children with SLI were reported to have difficulties with repeating words containing consonant clusters. Further evidence marshalling for a deviant trajectory in children with SLI was provided by McKean, Letts, and Howard (2013) who showed developmental differences in the performance of children with TLD and SLI on NWR. The authors found that the children with SLI reached a plateau in their development widening the gap in their repetition. That is, problems with repeating nonwords do not disappear, suggesting that children with SLI do not catch up even when they grow older. Ebbels, Dockrell, and van der Lely (2012) compared the
performance of older children with SLI aged 11-15 to younger children matched for language (a group matched for respective grammar and a group matched for receptive vocabulary). The results indicated that children with SLI (low-SLI) scored significantly lower than younger language matched children whose age range was 6–9 years old.

Fewer studies compared the abilities to repeat syntactic structures in children with SLI and younger language-matched controls. Available studies bring inconclusive results. On the one hand, Stokes, Wong, Fletcher, and Leonard (2006), for example, found that children with SLI scored similarly to language-matched controls (matched on receptive grammar) on a Cantonese SRep test. However, there are also findings demonstrating that children with SLI differ from younger language-matched controls (Briscoe et al., 2001; Riches, 2012).

To recap, previous research comparing children with SLI and younger language-matched children provides inconclusive results. On the one hand, some studies provide evidence supporting the claim that SLI is a delay by showing that children with SLI do not differ from younger language-matched controls. However, there are studies showing that children with SLI perform lower when compared to younger language-matched children with TLD. Few studies comparing children with SLI to younger language-matched show that children with SLI exhibit different error profiles as compared to younger language-matched controls. Such studies advanced the claim for deviance based on comparisons between children with SLI and younger language-matched children. We offer an innovative approach by comparing bilingual children with SLI to language-matched bilingual peers with TLD of the same age who are matched on a range of linguistic skills in their weaker language. Such comparison is expected to shed light on the delay-versus-deviant debate, while controlling for possible age effects.

1.2. The Weaker Language of Bilinguals with TLD

The linguistic abilities and skills are unevenly distributed within and across the two languages of a bilingual child with TLD (Kohnert, 2010). Most studies of bilingual acquisition focus on the acquisition of the societal language which in sequential acquisition starts as the weaker language and often becomes the dominant language over time. Other studies focus on maintenance of the heritage language which often becomes the weaker language as the societal language gains dominance. In both situations, delay and deviance have been discussed (Paradis & Genesee, 1996). The delay hypothesis proposes that bilingual children follow similar trajectories to the ones observed in monolingual children in both L1 and L2 acquisition. While deviation from monolingual patterns of acquisition was attributed to cross-linguistic influence: the influence from L1 on L2 and L2 on L1 (see Meir, Walters, &Armon-Lotem, 2016a for an overview). It has also been suggested that the weaker language of simultaneous bilingual children resembles L2 acquisition and the errors observed in the weaker language are the result of
cross-linguistic influence from the dominant language (see discussion in Meisel, 2007).

In unbalanced bilinguals, the delay hypothesis has been advocated when the weaker language of bilinguals shows resemblance to the dominant language. For example, Bernardini and Schlyter (2004) concluded that the development of the weaker language of simultaneous Swedish-Italian/German bilingual children followed the same order as in the dominant language, but the lexical realization was found to be delayed. However, there is also evidence that the weaker language of bilinguals is affected by the dominant language. For instance, Yip & Matthews (2000) demonstrated an influence of the more dominant Cantonese on the weaker English. In a similar vein, Argyri and Sorace (2007) showed the subject placement (preverbal vs. post verbal) in the weaker language (Greek) of English-Greek bilinguals was affected by the dominant language (English).

Our assumption is that that the acquisition of the weaker language in bilinguals with TLD, whether delayed or deviant from L1 (e.g., resembling L2 acquisition in adults or influenced by the dominant language), is typical and not disordered. Indeed, studies comparing monolingual children with SLI to sequential bilingual children show that, albeit surface similarities between the two, disorder can be teased apart from bilingualism. Previous findings show that there are quantitative and qualitative differences children between monolingual children with SLI and bilinguals with TLD (e.g., Armon-Lotem, 2014; Paradis, Rice, Crago, & Marquis, 2008).

2. The Current Study

Our study compares children with SLI to language-matched controls of the same chronological age. This is facilitated by our innovative approach, looking at bilingual children with SLI and comparing their profiles to those of unbalanced bilinguals in their weaker language. In the comparison of monolingual children with and without SLI, language-matched controls are always younger than children with SLI. Bilingualism offers a unique opportunity to match children not only on language skills but also for chronological age. The focus on bilingual children makes it possible to conduct the comparison for the two language systems in bilingual children with SLI against two groups of bilingual children with TLD.

By comparing the linguistic profiles of these two populations on nonword repetition and sentence repetition, our study brings new evidence for the delay-versus-deviant debate. Our study is driven by the assumption that the weaker language of bilinguals presents a typical pattern albeit delayed or/and influenced by the stronger language. We hypothesize that similar performance between children with SLI and language-matched controls would point at typical patterns of bilingual acquisition in the two populations favoring the delay-hypothesis. By contrast, differences between bilinguals with SLI and unbalanced bilinguals in the weaker language would point at a disorder, rather than a delay, in children with SLI. In this study, we compare both languages of bilingual children with SLI (L1-
Russian and L2-Hebrew). In L1-Russian, bilingual children with SLI are compared to those unbalanced bilinguals with TLD who are weak in Russian, but dominant in Hebrew. In L2-Hebrew, we compare bilingual children with SLI to unbalanced bilinguals with TLD who are weak in Hebrew, but dominant in Russian. This focus on the weaker language further aims to fill a gap created by the “weak interest in the weaker language” of bilinguals (Bernardini, 2016) looking at the two groups of bilingual children, one group with a weaker L1 and the second with a weaker L2.

3. Participants

The children in this study were drawn from a larger pool of participants (Meir, 2016). Three groups of bilinguals were compared in the current study: Russian-Hebrew bilinguals with SLI (biSLI; n=23), Hebrew-dominant bilinguals with weak Russian (RUS-weak: n=39) and Russian-dominant bilinguals with weak Hebrew (HEB-weak: n=19) (see Table 1 for the background information).

Background information was collected using parental questionnaires (BIPAQ) (Abutbul-Oz, Armon-Lotem, & Walters, 2012) developed alongside PABIQ (Tuller, 2015) within COST Action IS0804 “Language impairment in a multilingual society: Linguistic patterns and the road to assessment” (www.bisli.org). Language proficiency scores were obtained in both languages. In Russian language proficiency was measured using the Russian Language Proficiency Test for Multilingual Children (Gagarina, Klassert, & Topaj, 2010). In Hebrew, language proficiency was tested using the Goralnik Screening Test for Hebrew (Goralnik, 1995).

Table 1. Background information on the participants per group.

<table>
<thead>
<tr>
<th></th>
<th>RUS-weak (n=39)</th>
<th>HEB-weak (n=19)</th>
<th>biSLI (n=23)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age (in months)</td>
<td>71 (2)</td>
<td>72 (2)</td>
<td>72 (4)</td>
</tr>
<tr>
<td>Mother’s Education (in years)</td>
<td>14 (3)</td>
<td>14 (3)</td>
<td>14 (3)</td>
</tr>
<tr>
<td>Age of L2 Onset</td>
<td>23 (24)</td>
<td>47 (15)</td>
<td>38 (15)</td>
</tr>
<tr>
<td>Length of Exposure to L2</td>
<td>48 (23)</td>
<td>26 (15)</td>
<td>34 (16)</td>
</tr>
<tr>
<td>Non-verbal IQ</td>
<td>113 (12)</td>
<td>114 (18)</td>
<td>113 (11)</td>
</tr>
<tr>
<td>Proficiency in L1-Russian</td>
<td>57 (15)</td>
<td>87 (7)</td>
<td>51 (15)</td>
</tr>
<tr>
<td>Proficiency in L2-Hebrew</td>
<td>148 (13)</td>
<td>110 (15)</td>
<td>100(22)</td>
</tr>
</tbody>
</table>
The three groups were matched for age ($F(2,78) = 1.76, p = .18$), socio-economic status measured by maternal education in years ($F(2,78) = 1.76, p = .18$) and non-verbal IQ ($F(2,75) = 0.05, p = .95$). By definition, the groups showed group difference for language proficiency in Russian ($F(2,78) = 44.53, p < .001, \eta^2 = .53$) and in Hebrew ($F(2,78) = 74.07, p < .001, \eta^2 = .66$). Tamhane-2 post-hoc tests determined that the biSLI group had similar proficiency scores with the unbalanced bilingual groups in their weaker language: in Russian with the RUS-weak group ($p = .35$) and in Hebrew with the HEB-weak group ($p = .27$). Needless to say, unbalanced bilinguals outperformed the biSLI group in their dominant language. The HEB-weak group had significantly higher scores in Russian, dominant language, as compared to the biSLI ($p < .001$). Similarly, the RUS-weak group, dominant in Hebrew, outperformed the biSLI group in Hebrew ($p < .001$).

Differences in language proficiency scores were also implicated in age of onset of bilingualism ($F(2,78) = 10.03, p < .001, \eta^2 = .20$) (biSLI= HEB-weak < RUS-weak) and length of exposure to L2-Hebrew ($F(2,78) = 8.97, p < .001, \eta^2 = .19$) (biSLI= HEB-weak < RUS-weak).

4. Procedure and Materials

Nonword repetition (NWR) and sentence repetition (SRep) tasks were administered to the bilingual children in Russian and in Hebrew in two separate sessions, on different days. Each participant was tested individually in a quiet room in the preschool. Testing was performed by native speakers of each language. The order of language sessions (L1-Russian first, L2-Hebrew first) was counter-balanced. In Russian and in Hebrew, the NWR task was administered first, followed by the SRep task. The experimental tasks were pre-recorded by native speakers of Russian and Hebrew for the consistency of presentation, and were presented via a power-point presentation using earphones. The participants were instructed to repeat the stimuli orally verbatim. Practice items preceded the experimental items to ensure that the child understood the task.

Nonword Repetition (NWR): Shorter versions of the Russian-Hebrew NWR tasks developed by Armon-Lotem & Chiat (2012) were used in this study. Children’s repetitions of the nonwords were scored as correct if all consonant and vowels were produced correctly and there were no additions. If the response contained substitutions, omissions, or additions, it was scored as incorrect. Minor consistent pronunciation errors were allowed. Raw scores were converted to a proportion out of the 14 tested items. In addition, error pattern analysis was conducted (based on Marshall, Harris, & van der Lely, 2003; Roy & Chiat, 2004). Errors were coded for cluster reduction, syllable reduction, lexicalization (repetition of real words instead of nonwords), consonant and vowel substitutions; additional two categories included no answer and other errors.

Sentence Repetition (SRep): The SRep tasks in Russian (Meir & Armon-Lotem, 2015) and in Hebrew (Meir, Armon-Lotem, & Walters, 2016b) were based on LITMUS-SRep (Marinis & Armon-Lotem, 2015) developed within COST Action IS0804 (www.bi-sli.org) and contained 56 sentences in each language. The
children’s repetitions of the sentences were scored as correct if target structures were correctly reproduced (the proportion of correctly repeated structure out of 56 was calculated). Lexical substitutions were scored as correct (e.g., brother/boy, soup/food). Raw scores were converted to a proportion of the total 56 sentences. Error patterns were noted for each target structure separately, and the proportion for each error type out of total responses was calculated.

5. Results

To explore the quantitative and qualitative differences between the bilingual children with SLI (biSLI) and unbalanced bilinguals in their weaker language, the biSLI group was compared in Russian to unbalanced bilinguals with dominant-Hebrew / weak-Russian (RUS-weak) and in Hebrew to unbalanced bilinguals with dominant-Russian / weak-Hebrew (HEB-weak) on nonword repetition (NWR) and sentence repetition (SRep) tasks. First, we report the results for Russian (biSLI vs. RUS-weak), followed by Hebrew (biSLI vs. HEB-weak).

5.1. The Russian Data: the biSLI Group vs. the RUS-weak Group

Table 2 presents means, standard deviations and results for independent t-tests for NWR and SRep in Russian comparing the biSLI group and the RUS-weak group. The results revealed quantitative differences between the biSLI group and bilingual children with TLD in their weaker language. The RUS-weak group outperformed the biSLI group on both tasks (NWR and SRep). The effect sizes (as measured by Cohen’s d) were large for both tasks.

Table 2. Descriptive statistics and t-test results for Russian (RUS-weak vs. biSLI).

<table>
<thead>
<tr>
<th>Task</th>
<th>RUS-Weak Mean (SD)</th>
<th>biSLI Mean (SD)</th>
<th>t-test results</th>
</tr>
</thead>
<tbody>
<tr>
<td>NWR</td>
<td>0.84 (0.12)</td>
<td>0.67 (0.17)</td>
<td>$t(60) = 4.53$, $p<.001$, Cohen’s $d = 1.56$</td>
</tr>
<tr>
<td>SRep</td>
<td>0.60 (0.20)</td>
<td>0.36 (0.24)</td>
<td>$t(59) = 4.13$, $p<.001$, Cohen’s $d = 1.09$</td>
</tr>
</tbody>
</table>

We further investigated whether unbalanced bilinguals in the weaker language show similar or different error patterns on NWR and SRep.

We compared error profiles of the RUS-weak group to those of the biSLI groups. Figure 1 depicts error patterns on NWR across the two groups in Russian. In both groups (RUS-weak and biSLI), substitution of vowels and consonants was the most common error pattern. However, the biSLI group had significantly more cluster reduction errors ($Mann–Whitney U = 129.5$, $p < .001$) and syllable reduction errors ($Mann–Whitney U = 324$, $p = .038$).
Likewise, in addition to the quantitative differences on the Russian SRep task, different error patterns were observed (see Table 3). The biSLI group produced more sentence fragments, omitted conjunctions and simplified structures (e.g., produced simple SVO sentences instead of targeted object questions, object relatives and subject relatives). In the RUS-weak group, the errors were related to case morphology under the influence of the dominant Hebrew which has sparse case morphology. For example, the RUS-weak group had problems with object relative clause because of problems with case on wh-pronoun.
Table 3: Proportions of most prominent error patterns observed on SRep in Russian (RUS-weak vs. biSLI).

<table>
<thead>
<tr>
<th>Target Structure</th>
<th>Error Type</th>
<th>RUS-Weak Mean (SD)</th>
<th>biSLI Mean (SD)</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Biclausal with coordination</td>
<td>Sentence fragment</td>
<td>0.03</td>
<td>0.13</td>
<td>(p = .006)</td>
</tr>
<tr>
<td>Biclausal with subordination</td>
<td>Conjunction omission</td>
<td>0.04</td>
<td>0.27</td>
<td>(p < .001)</td>
</tr>
<tr>
<td>Real Conditional</td>
<td>Conjunction omission</td>
<td>0.01</td>
<td>0.14</td>
<td>(p < .001)</td>
</tr>
<tr>
<td>Unreal Conditional</td>
<td>Conjunction omission</td>
<td>0.01</td>
<td>0.08</td>
<td>(p = .035)</td>
</tr>
<tr>
<td>Oblique Question (OQ)</td>
<td>Preposition omission</td>
<td>0.08</td>
<td>0.31</td>
<td>(p = .001)</td>
</tr>
<tr>
<td>Object Question (OQ)</td>
<td>OR into SVO</td>
<td>0.04</td>
<td>0.16</td>
<td>(p = .007)</td>
</tr>
<tr>
<td></td>
<td>OR into wh-question</td>
<td>0.00</td>
<td>0.02</td>
<td>(p = .006)</td>
</tr>
<tr>
<td></td>
<td>Case error</td>
<td>0.34</td>
<td>0.12</td>
<td>(p = .001)</td>
</tr>
<tr>
<td>Subject Relative</td>
<td>SR into SVO</td>
<td>0.06</td>
<td>0.40</td>
<td>(p < .001)</td>
</tr>
<tr>
<td></td>
<td>SR into wh-question</td>
<td>0.00</td>
<td>0.04</td>
<td>(p = .011)</td>
</tr>
</tbody>
</table>

5.2. The Hebrew Data: the biSLI Group vs. the HEB-weak Group

Table 4 presents means, standard deviations and results for independent \(t\)-tests for Hebrew repetition tasks (NWR and SRep) probing quantitative differences between the biSLI group and the HEB-weak group. The results revealed that bilingual children with typical language development scored significantly higher in their weaker language (Hebrew) than the biSLI group. Similarly to the Russian tasks, the effect sizes (as measured by Cohen’s \(d\)) were large for both tasks.

Table 4. Descriptive statistics and \(t\)-test results for Hebrew (HEB-weak vs. biSLI).

<table>
<thead>
<tr>
<th>Task</th>
<th>HEB-Weak Mean (SD)</th>
<th>biSLI Mean (SD)</th>
<th>(t)-test results</th>
</tr>
</thead>
<tbody>
<tr>
<td>NWR</td>
<td>0.67 (0.19)</td>
<td>0.45 (0.19)</td>
<td>(t(38) = 3.67, p = .001, Cohen’s (d) = 1.16)</td>
</tr>
<tr>
<td>SRep</td>
<td>0.66 (0.23)</td>
<td>0.43 (0.22)</td>
<td>(t(37) = 3.14, p = .003, Cohen’s (d) = 1.02)</td>
</tr>
</tbody>
</table>

Subsequently, error patterns were compared for the Hebrew tasks in the biSLI group to those of the HEB-weak group (see Figure 2).
On NWR in Hebrew, similarly to the Russian NWR findings, the most common error pattern was consonant and/or vowel substitution; and just as in the Russian NWR task, in Hebrew the biSLI group had significantly more cluster reduction errors as compared to the HEB-weak group (Mann–Whitney $U = 95.5$, $p = .004$) and syllable reduction errors (Mann–Whitney $U = 114.5$, $p = .022$).

Table 5 presents the most prominent error patterns for the Hebrew SRep task across the two groups (biSLI vs. HEB-weak). Similarly to Russian, in Hebrew the biSLI group had significantly more preposition and conjunction omissions. Children with biSLI turned complex sentences into simpler sentences (e.g., object questions were turned into simple SVO sentences).

Table 5. Proportions of most prominent error patterns observed on SRep in Hebrew (HEB-weak vs. biSLI)

<table>
<thead>
<tr>
<th>Target Structure</th>
<th>Error Type</th>
<th>RUS-Weak Mean (SD)</th>
<th>biSLI Mean (SD)</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oblique Question (OQ)</td>
<td>OQ into subject question</td>
<td>0.01</td>
<td>0.18</td>
<td>$p = .002$</td>
</tr>
<tr>
<td></td>
<td>Preposition omission</td>
<td>0.17</td>
<td>0.38</td>
<td>$p = .030$</td>
</tr>
<tr>
<td>Object Relatives (OR)</td>
<td>OR into SVO</td>
<td>0.07</td>
<td>0.23</td>
<td>$p = .037$</td>
</tr>
<tr>
<td>Advanced Conjunctions</td>
<td>Conjunction omission</td>
<td>0.12</td>
<td>0.30</td>
<td>$p = .017$</td>
</tr>
</tbody>
</table>
6. Discussion

Our study aimed to determine whether language profiles of bilingual children with SLI are similar or different compared to those of unbalanced bilinguals in their weaker language. Such comparison was devised to contribute to the delay-versus-deviant debate regarding language development in children with SLI. Secondly, our objective was to investigate the weaker language of bilinguals. The language development in unbalanced bilinguals in the weaker language is not expected to be disordered, while it may be delayed and or/ influenced by the dominant language.

Our study is unique as it compares children with SLI to language-matched children who are of the same age. Previous studies on monolingual children compared children with SLI to language-matched controls who are younger than children with SLI, and the comparison brought evidence for both hypothesis (delay and deviance).

Our study couples with the literature suggesting that language profiles in children with SLI show deviant pattern of acquisition. Out findings point at quantitative and qualitative differences between children with SLI and language-matched controls who are also matched for age. More importantly, our results are consistent for both languages of bilinguals with SLI. When tested in their weaker language, unbalanced bilinguals with TLD, the RUS-weak and the HEB-weak groups, outperformed the biSLI. Moreover, we showed that the error profiles differ between the biSLI and unbalanced bilinguals in the weaker language. On the NWR tasks in both languages (Russian and Hebrew), the biSLI group had more cluster simplification and more syllable omissions, which have previously been reported for monolingual children with SLI (e.g., Marshall et al., 2003). Similarly, on SRep tasks, the error profiles of the biSLI and the unbalanced bilinguals in the weaker language differed. The biSLI group produced errors which cannot be traced to cross-linguistic influence (e.g., produced simple SVO sentences instead of targeted object questions, object relatives and subject relatives). These error patterns have been previously reported for monolingual children with SLI. Yet, in unbalanced bilinguals, we found errors which can be explained by the influence of the knowledge of the dominant language (e.g., in the RUS-weak group case morphology errors).

To sum up, our study shows that the weaker language of bilingual children with TLD differs from that of bilingual children with SLI. We found quantitative and qualitative differences between bilinguals with SLI and bilinguals with TLD in the weaker language. Thus, returning to the delay-versus-deviant debate, we argue that bilingual children with SLI show deviant rather than delayed language acquisition. This was reflected in the error patterns on both nonword repetition and sentence repetition in both languages of the bilingual children with SLI. Finally, errors in the weaker language of unbalanced bilinguals can be traced to the influence of the dominant language.
References

